Summary of Lesson Plans of College Faculty for Academic Session 2020 - 2021

GOVT. COLLEGE ISRANA (PANIPAT)

Name of Ext. Lecturer: Pooja Jaglan

Subject: Chemistry (inorganic& physical)

Class: B.Sc. 2nd year 3rd semester

For the Month of Oct. 2020 to feb. 2021

months	Topics/Chapters to be Covered
2020	Chemistry of d-Block elements
oct. 2020	Definition of transition elements, position in the periodic table, General
	characteristic properties of d-Block elements. Comparison of properties of 2d
	clements with 4d and 3d elements with reference only to jonic radii, oxidation
	state, magnetic and spectral properties and stereo chemistry
	Stability of various oxidation states and e.m.f (Latimer and Frost diagrams)
	Structure and properties of some compounds of transition elements. TiO2 VOCI2
	FeCl ₃ , CuCl ₂ and Ni(CO) ₄ .
	Coordination Compounds
Nov 2020	Werner's theory of coordination compounds, effective atomic number, chalates
	nomenciature of coordination compounds. Isomerism in coordination compounds
	valence bolid theory of transition metal complexes
	Non-aqueous solvents Physical properties of solvents, types of solvents and their garden.
	characteristics, reactions in non aqueous solvents with reference to liquid NH ₃ and liquid SO ₂ .
Dec. 2020	1 net mody namics
	Definition of thermodynamic terms: system, surrounding etc. Type s
	of systems, intensive and extensive properties. State and path
	functions and their differentials. Thermodynamic process
	Inermodynamic equilibrium, Concept of heat and work
	First law of thermodynamics: statement, concepts of internal
3	energy and enthalpy. Heat capacity, heat capacities at constant
	volume and pres sure and their re lationship. Joule—Thomson
	coefficient for ideal gas and real gas and inversion temperature
	Calculation of w,q, dU & dH for the expansion of ideal gases under
	isothermal and adiabatic conditions for reversible process
Jan. 2021	Nernst distribution law – its thermodynamic derivation
	Applications of distribution law: (i) Determination of degree of
	nydrolysis and hydrolysis constant of aniline hydrochloride (ii)
	Determination of equilibrium constant of notassium tri-iodide
,	complex and (III) Process of extraction. More stress on numerical
	problems.
Feb.2021	Equilibrium constant and free energy, concept of chemic al
	potential, Thermodynamic derivation of law of chemical
	equilibrium. Tempe rature dependence of equilibrium constant
	Clausius—Clapeyron equation and its applications

Signature of Ext. Lecturer Govt. College Israna (Pnp)

Summary of Lesson Plans of College Faculty for Academic Session 2020 - 2021 GOVT. COLLEGE ISRANA (PANIPAT)

Name of Ext. Lecturer: Pooja Jaglan St

Subject : Chemistry(inorganic & physical)

Class: B.Sc. 1st year 1st semester

For the Month of Nov. 2020 to feb. 2021.

months	Topics/Chapters to be Covered
Nov. 2020	Atomic Structure Idea of de Broglie matter waves, Heinsenberg's uncertainty principle, atomic orbitals, quantum numbers, radial and angular wave functions, normal and orthogonal wave functions, significance of Ψ and Ψ_2 , probability distribution curves, shapes of s, p, d, f orbitals, Aufbau and Pauli exclusion principles, Hund's multiplicity rules, Electronic configuration of elements, effective nuclear charge, Slater's rules.
Dec. 2020	Periodic table and atomic properties Classification of periodic table into s, p, d, f blocks, atomic and ionic radii, ionisation energy, electron affinity and electronegativity definition, methods of determination or evaluation, trend in periodic table (in s and p-block elements), Pauling, Mulliken, Allred Rachow and Mulliken Jaffe's electronegativity scale, Sanderson's electron density
Jan. 2020	Covalent Bond Valence bond theory (Heitler-London and Pauling approach) and its limitation, directional characteristics of covalent bond, various type of hybridisation and shapes of simple inorganic molecules and ions (BeF2, BF3, CH4, PF5, SF6, IF7, SO4, ClO41, NO3,valence shell electron pair repulsion (VSEPR) theory to NH3, H3O+, SF4, ClF3, H2O, SnCl2, ClO31 and ICl2. Molecular orbital theory of homonuclear (N2, O2) heteronuclear (CO and NO) diatomic molecules and ions, bond energy, bond angle, bond length and dipole moments, percentage ionic character from dipole moment and electronegativity difference.
Feb. 2021	Ionic Solids Ionic structures (NaCl, CsCl, ZnS (Zinc blende), CaF ₂) size effects, radius ratio rule and its limitations, Madelung constant, Stoichiometric and Non stoichiometric defects in crystals, Lattice energy (mathematical derivation excluded) and Born-Haber cycle, Solvation energy and its relation with solubility of Ionic solids, Polarizing power and Polarisability of ions, Fajan's rule. Liquid States, Solid State

Signature of Ext. Lecturer Govt. College Israna (Pnp)