Roll No.

Total Pages : 04

GSQ/M-20

BM-361
Real and Complex Analysis

Note : Attempt Five questions in all, selecting one question from each Section. Q. No. $\mathbf{1}$ is compulsory.

Compulsory Question

1. (a) Evaluate :

$$
\int_{0}^{\infty} e^{-a^{2} x^{2}} d x
$$

(b) Find the coefficient of magnification and angle of rotation at $z=3+i$ for the conformal transformation $w=z^{2}$.
(c) Show that the function : 2

$$
v(x, y)=e^{-x}(x \sin y-y \cos y)
$$

is harmonic.
(d) Define Fourier series for even functions.

Section I

2. (a) Show that the functions $u=x^{2}+y^{2}+z^{2}$, $v=x y-x z-y z, \quad w=x+y-z \quad$ are functionally dependent. Also find the relation connecting them.
(b) Prove that : 4

$$
\int_{0}^{\infty} \frac{x^{m-1}-x^{n-1}}{(1+x)^{m+n}} d x=0
$$

3. (a) Evaluate the integral $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} y^{2} d y d x$ by changing the order of integration.
(b) Evaluate :

$$
\begin{gathered}
\iiint_{\mathrm{V}} z\left(x^{2}+y^{2}+z^{2}\right) d x d y d z, \\
\text { where } \mathrm{V}=\left\{(x, y, z): 0 \leq z \leq h, x^{2}+y^{2} \leq a^{2}\right\} .
\end{gathered}
$$

Section II

4. (a) If the series $\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$ converges uniformly to a function ' f ' on $[-\pi, \pi]$, then prove that it is the Fourier series for ' f ' on $[-\pi, \pi]$.
(b) Find the Fourier series expansion of the function

$$
f(x)=x-x^{2} \text { in }[-\pi, \pi] .
$$

5. (a) Obtain $f(x)=x$ as Half range sine series in

$$
0<x<2 .
$$

(b) Find the Fourier expansion for the function: 4

$$
f(x)= \begin{cases}a & \text { for } 0<x<\pi \\ -a & \text { for } \pi<x<2 \pi\end{cases}
$$

Section III

6. (a) Determine the stereographic projection of the points $z=x+i y$ of extended complex plane on the sphere of radius $\frac{1}{2}$ and centre $\left(0,0, \frac{1}{2}\right)$ in \mathbf{R}^{3}.
(b) Prove that $f(z)=\bar{z}$ is nowhere differentiable but continuous everywhere in complex plane.
7. (a) Show that the function $u(x, y)=x^{3}-3 x y^{2}$ is harmonic and find the corresponding analytic function.
(b) Prove that the function $f(z)= \begin{cases}\frac{(\bar{z})^{2}}{z}, & z \neq 0 \\ 0, & z=0\end{cases}$ is not analytic at the origin, although the CauchyRiemann equations are satisfied at that point. 4

Section IV

8. (a) Determine the region in the w-plane corresponding to the region bounded by the lines $x=0, y=0$, $x=2, y=1$ in the z-plane mapped under the transformation $w=z+(1-2 i)$.
(b) Find the fixed points and normal forms of the Mobius transformation $w=\frac{z}{z-2}$.
9. (a) Find the bilinear transformation which maps the points $z=0,-1, i$ onto $w=i, 0, \infty$. Also, find the image of the unit circle $|z|=1$. 4
(b) Prove that the image of $|z+3 i|=6$ under the transformation $f(z)=\frac{1}{z}$ is $u^{2}+v^{2}=\frac{1}{27}(1-6 v) .4$
