Roll No.

Total Pages : 04

GSQ/M-20 1743 MATHEMATICS BM-361 Real and Complex Analysis

Time : Three Hours]

[Maximum Marks : 40

Note : Attempt *Five* questions in all, selecting *one* question from each Section. Q. No. 1 is compulsory.

Compulsory Question

1. (a) Evaluate : 2

$$\int_0^\infty e^{-a^2x^2} dx$$

- (b) Find the coefficient of magnification and angle of rotation at z = 3 + i for the conformal transformation w = z².
- (c) Show that the function : 2

$$v(x, y) = e^{-x} (x \sin y - y \cos y)$$

is harmonic.

(d) Define Fourier series for even functions. 2

(2)L-1743

Section I

2. (a) Show that the functions $u = x^2 + y^2 + z^2$, v = xy - xz - yz, w = x + y - z are functionally dependent. Also find the relation connecting them. 4

(b) Prove that :

$$\int_0^\infty \frac{x^{m-1} - x^{n-1}}{(1+x)^{m+n}} \, dx = 0$$

4

4

- 3. (a) Evaluate the integral $\int_0^1 \int_0^{\sqrt{1-x^2}} y^2 \, dy \, dx$ by changing the order of integration. 4
 - (b) Evaluate : $\iiint_{V} z \left(x^2 + y^2 + z^2\right) dx dy dz,$

where
$$V = \{(x, y, z) : 0 \le z \le h, x^2 + y^2 \le a^2\}$$

Section II

4. (a) If the series $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ converges uniformly to a function 'f' on $[-\pi, \pi]$, then prove that it is the Fourier series for 'f' on $[-\pi, \pi]$.

(2)L-1743

(b) Find the Fourier series expansion of the function $f(x) = x - x^2$ in $[-\pi, \pi]$.

5. (a) Obtain
$$f(x) = x$$
 as Half range sine series in
 $0 < x < 2$.

(b) Find the Fourier expansion for the function : 4

 $f(x) = \begin{cases} a & \text{for } 0 < x < \pi \\ -a & \text{for } \pi < x < 2\pi \end{cases}$

Section III

- 6. (a) Determine the stereographic projection of the points z = x + iy of extended complex plane on the sphere of radius $\frac{1}{2}$ and centre $\left(0, 0, \frac{1}{2}\right)$ in \mathbb{R}^3 . 4
 - (b) Prove that $f(z) = \overline{z}$ is nowhere differentiable but continuous everywhere in complex plane. 4
- 7. (a) Show that the function $u(x, y) = x^3 3xy^2$ is harmonic and find the corresponding analytic function. 4
 - (b) Prove that the function $f(z) = \begin{cases} \frac{(\overline{z})^2}{z}, & z \neq 0\\ 0, & z = 0 \end{cases}$

3

is not analytic at the origin, although the Cauchy-Riemann equations are satisfied at that point. 4

(2)L-1743

Section IV

8. (a) Determine the region in the *w*-plane corresponding
to the region bounded by the lines
$$x = 0$$
, $y = 0$,
 $x = 2$, $y = 1$ in the *z*-plane mapped under the
transformation $w = z + (1-2i)$.

(b) Find the fixed points and normal forms of the
Mobius transformation
$$w = \frac{z}{z-2}$$
. 4

9. (a) Find the bilinear transformation which maps the points z = 0, -1, i onto $w = i, 0, \infty$. Also, find the image of the unit circle |z| = 1.

(b) Prove that the image of
$$|z+3i| = 6$$
 under the transformation $f(z) = \frac{1}{z}$ is $u^2 + v^2 = \frac{1}{27}(1-6v)$. 4

4