Roll No.

Total Pages : 03

GSQ/M-20
 MATHEMATICS
 BM-362
 Linear Algebra

 1744Time : Three Hours]
[Maximum Marks : 40
Note : Attempt Five questions in all, selecting one question from each Unit. Q. No. 1 is compulsory.

(Compulsory Question)

1. (a) Define Linear Operator.
$11 / 2$
(b) Express vector $(1,2)$ as a linear combination of vectors $(2,0)$ and $(1,3)$. $11 / 2$
(c) Find a if the vectors $(1,-1,3),(1,2,-3)$ and $(a, 0,1)$ are linearly dependent. $\mathbf{2}$
(d) Define normed vector space. $\mathbf{1} 1 / 2$
(e) Find the norm of a vector $u=(2,-3,6)$ and normalize this vector.

Unit I

2. (a) Prove that every n-dimensional vector space $U(F)$ is isomorphic to F^{n}.
(b) For $u_{1}=(1,1,-1), u_{2}=(4,1,1), u_{3}=(1,-1,2)$ to be basis of R^{3}. Let $\mathrm{T}: \mathrm{R}^{3} \rightarrow \mathrm{R}^{2}$ be the linear transformation such that $\mathrm{T}\left(u_{1}\right)=(1,0), \mathrm{T}\left(u_{2}\right)=(0,1)$, $\mathrm{T}\left(u_{3}\right)=(1,1)$. Find T .
3. (a) If a finite dimensional vector space $\mathrm{V}(\mathrm{F})$ is a direct sum of its two subspaces W_{1} and W_{2}, then $\operatorname{dim} \mathrm{V}=\operatorname{dim} \mathrm{W}_{1}+\operatorname{dim} \mathrm{W}_{2} . \quad 4$
(b) If W_{1} and W_{2} are subspaces of V and $\operatorname{dim} \mathrm{W}_{1}=4$, $\operatorname{dim} \mathrm{W}_{2}=5$ and $\operatorname{dim} \mathrm{V}=7$, then find the possible values of $\operatorname{dim}\left(W_{1} \cap W_{1}\right)$.

Unit II

4. (a) Prove that two finite dimensional vector spaces over the same field are isomorphic iff they have the same dimension.
(b) Show that the mapping $\mathrm{T}: \mathrm{R}^{3} \rightarrow \mathrm{R}^{2}$ defined by $\mathrm{T}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{2}\right)$ is a linear transformation and is onto but not one-to-one.
5. (a) If $\mathrm{T}: \mathrm{U}(\mathrm{F}) \rightarrow \mathrm{V}(\mathrm{F})$ is a linear transformation, then prove that Rank $\mathrm{T}+$ Nullity $\mathrm{T}=\operatorname{dim} \mathrm{U}$.
(b) If $\mathrm{T}: \mathrm{R}^{4} \rightarrow \mathrm{R}^{3}$ is a linear transformation defined by $\mathrm{T}\left(e_{1}\right)=(1,1,1), \mathrm{T}\left(e_{2}\right)=(1,-1,1), \mathrm{T}\left(e_{3}\right)=(1,0,0)$ and $\mathrm{T}\left(e_{4}\right)=(1,0,1)$. Then verify that $\rho(T)+\mu(T)=\operatorname{dim} R^{4}=4$.

Unit III

6. (a) Prove that a linear transformation $\mathrm{T}: \mathrm{U} \rightarrow \mathrm{V}$ is non-singular iff T is one-to-one.
(b) If $\mathrm{T}: \mathrm{R}^{3} \rightarrow \mathrm{R}^{3}$ be a linear operator defined by $\mathrm{T}(x, y, z)=(x+z, x-z, y)$. Show that T is invertible and find T^{-1}.
7. (a) If $\mathrm{B}=\{(1,-2,3),(1,-1,1),(2,-4,7)\}$ is a basis of R^{3}, then find the dual basis of B .
(b) Find the eigen values, eigen vectors for the matrix

$$
\left[\begin{array}{lll}
0 & 1 & 0 \tag{4}\\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Unit IV

8. (a) Let V be an inner product space, then prove that $|<u, v>| \leq\|u\|\|v\|$ for all $u, v \in \mathrm{~V}$.
(b) If x and y are vectors in an inner product space, then show that $x=y$ iff $\langle x, z\rangle=\langle y, z\rangle$ for all $z \in \mathrm{~V}$.
9. (a) Prove that every finite dimensional inner product space has an orthonormal basis.
(b) Let T be a linear operator on a finite dimensional inner product space $V(F)$. It T is invertible, then show that so is T^{*} and $\left(\mathrm{T}^{*}\right)^{-1}=\left(\mathrm{T}^{-1}\right)^{*}$.
