Roll No.

Total Pages : 03

GSQ/M-20 1744 MATHEMATICS BM-362 Linear Algebra

Time : Three Hours]

[Maximum Marks : 40

Note : Attempt *Five* questions in all, selecting *one* question from each Unit. Q. No. **1** is compulsory.

(Compulsory Question)

1.	(a)	Define Linear Operator.	11⁄2
	(b)	Express vector (1, 2) as a linear combination	of
		vectors (2, 0) and (1, 3).	11⁄2
	(c)	Find a if the vectors $(1, -1, 3)$, $(1, 2, -3)$	and
		(a, 0, 1) are linearly dependent.	2
	(d)	Define normed vector space.	11⁄2
	(e)	Find the norm of a vector $u = (2, -3, 6)$	and
		normalize this vector.	11⁄2

Unit I

2.	(a)	Prove that every <i>n</i> -dimensional vector space	e U(F)
		is isomorphic to F^n .	4

(3)L-1744

1

- (b) For $u_1 = (1, 1, -1)$, $u_2 = (4, 1, 1)$, $u_3 = (1, -1, 2)$ to be basis of R³. Let T : R³ \rightarrow R² be the linear transformation such that T(u_1) = (1, 0), T(u_2) = (0, 1), T(u_3) = (1, 1). Find T. 4
- 3. (a) If a finite dimensional vector space V(F) is a direct sum of its two subspaces W_1 and W_2 , then dim V = dim W_1 + dim W_2 . 4
 - (b) If W_1 and W_2 are subspaces of V and dim $W_1 = 4$, dim $W_2 = 5$ and dim V = 7, then find the possible values of dim ($W_1 \cap W_1$).

Unit II

- 4. (a) Prove that two finite dimensional vector spaces over the same field are isomorphic iff they have the same dimension.
 - (b) Show that the mapping $T : \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(x_1, x_2, x_3) = (x_1, x_2)$ is a linear transformation and is onto but not one-to-one. 4
- 5. (a) If $T : U(F) \rightarrow V(F)$ is a linear transformation, then prove that Rank T + Nullity T = dim U. 4
 - (b) If $T : R^4 \to R^3$ is a linear transformation defined by $T(e_1) = (1, 1, 1), T(e_2) = (1, -1, 1), T(e_3) = (1, 0, 0)$ and $T(e_4) = (1, 0, 1)$. Then verify that $\rho(T) + \mu(T) = \dim R^4 = 4$.

(3)L-1744

Unit III

6.	(a)	Prove that a linear transformation $T : U \rightarrow V$ is	5
		non-singular iff T is one-to-one.	1
	(b)	If $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear operator defined by	y
		T(x, y, z) = (x + z, x - z, y). Show that T is	S
		invertible and find T^{-1} .	1
7.	(a)	If B = { $(1, -2, 3)$, $(1, -1, 1)$, $(2, -4, 7)$ } is a basis	S
		of R^3 , then find the dual basis of B.	4

- (b) Find the eigen values, eigen vectors for the matrix
 - $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$ 4

Unit IV

- 8. (a) Let V be an inner product space, then prove that $|\langle u, v \rangle| \le ||u|| ||v||$ for all $u, v \in V$. 4
 - (b) If x and y are vectors in an inner product space, then show that x = y iff $\langle x, z \rangle = \langle y, z \rangle$ for all $z \in V$.
- 9. (a) Prove that every finite dimensional inner product space has an orthonormal basis. 4
 - (b) Let T be a linear operator on a finite dimensional inner product space V(F). It T is invertible, then show that so is T^* and $(T^*)^{-1} = (T^{-1})^*$. 4

(3)L-1744