Roll No.
Total Pages : 3
GSM/M-20
1613

Sequences and Series

Paper - BM-241

Time allowed : 3 Hours
Maximum Marks : 40

Note: Attempt five questions in all, selecting one questions from each Section. Question No. 1 is compulsory.

Compulsory Question

1. (i) Give example of a set S , which is infinite and bounded.
(ii) Find interior points of the set $\mathrm{S}=(1,2) \mathrm{U}\{3,4,5\} .1$
(iii) Define compact set. 1
(iv) State Squeeze principle 1
(v) Check whether $<4,1,9,19, \ldots>$ is a subsequence of <n> or not.
(vi) State Leibnitz test on Alternating series.
(vii) Show that infinite product $\prod_{\mathrm{n}=1}^{\infty}\left(\mathrm{n}+\frac{1}{\mathrm{n}}\right)$ is
divergent. divergent.
(viii) State Dirichlet test for arbitrary series. 1 SECTION-I
2. (a) Prove that Q (set of rationals) is not complete ordered field. 4
(b) Define closure of a set and prove that: 4 $\overline{(\mathrm{A} \cup \mathrm{B})}=\overline{\mathrm{A}} \cup \overline{\mathrm{B}}$
3. (i) Prove that A° is an open set.
(ii) State and prove Bolzano-Weierstrass theorem. 4 SECTION-II
4. (i) State and prove Cauchy's first theorem on limits.
(ii) Give an example of a sequence $<\mathrm{a}_{\mathrm{n}}>$ which is not a bounded but for which $\left\langle\frac{\mathrm{a}_{\mathrm{n}}}{\mathrm{n}}\right\rangle$ is a null sequence.
5. (i) Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}$ is convergent to $\frac{1}{4}$
(ii) If the series $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a n_{n}=0$.

Is converse true? Justify your answer.

SECTION-III

6. (a) State and prove Gauss Test for infinite series. 4
(b) Test the convergence of $\frac{a+x}{1}+\frac{(a+2 \mathrm{x})^{2}}{2 l .}+\frac{(a+3 \mathrm{x})^{3}}{3 \mathrm{l} .}+\ldots$
7. (a) Examine the convergence $\sum_{n=1}^{\infty}\left(n+\frac{1}{n}\right)^{n} x^{n},(x>0) .4$
(b) Test the convergence of $\sum_{n=1}^{\infty} n e^{-n^{2}}$

SECTION-IV

8. (i) State and prove Leibnitez's test for convergence of an Alternating series.
(ii) Test the convergence $\sum_{\mathrm{n}=1}^{\infty} \frac{\cos \mathrm{n} \mathrm{x}}{\mathrm{n}^{\mathrm{p}}},(\mathrm{p}>0) \quad 4$
9. (i) Show that the Cauchy product of the convergent series $\sum_{\mathrm{n}=1}^{\infty}(-1)^{\mathrm{n}-1} \frac{1}{\sqrt{\mathrm{n}}}$ with itself is not convergent. 4
(ii) Show that the infinite product 4
$\left(1+\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1+\frac{1}{4}\right)\left(1-\frac{1}{5}\right) \ldots$ congerges to 1 .
P.T.O.
