Roll No.

Total Pages : 3

GSE/M-20

1448

MATHEMATICS

(Number Theory and Trigonometry)

Paper : BM-121

Time : Three Hours]

[Maximum Marks : 27

Note : Attempt *five* questions in all. Question No. 1 is compulsory. Select *one* question from each section.

Compulsory Question

1. (a) If a|c, b|c and (a, b) = 1, then ab|c. 1¹/₂

(b) If a is odd, prove that
$$a^2 \equiv 1 \pmod{8}$$
.

(c) Evaluate
$$d(630)$$
. $1\frac{1}{2}$

- (d) Prove that $\cosh^{-1} x \sinh^2 x = 1$. $1\frac{1}{2}$
- (e) Prove that $\sinh^{-1} x = -i \sin^{-1} (ix)$. $1\frac{1}{2}$

SECTION-I

- 2. (a) Find the g.c.d. of 275 and 200, and express it in the form m.275 + n.200. $2\frac{1}{2}$
 - (b) Solve the congruence $15x \equiv 12 \pmod{21}$. $2\frac{1}{2}$

1448/PDF/KD/464

[P.T.O.

- 3. (a) Show that $2^{48} \equiv 1 \pmod{105}$. $2\frac{1}{2}$
 - (b) Find the remainder when 2.28! is divided by 31. $2\frac{1}{2}$

SECTION-II

- 4. (a) Solve the congruences $x \equiv 2 \pmod{3}$, $x \equiv 3 \pmod{5}$, $x \equiv 5 \pmod{2}$ simultaneously. $2^{1/2}$
 - (b) Show that 2, 4, 6,, 2m is a CRS (mod m) if m is odd.
 2¹/₂
- 5. (a) Find highest power of 7 contained in 1000!. $2\frac{1}{2}$
 - (b) Show that 3 is a quadratic residue of 23. $2\frac{1}{2}$

SECTION-III

6. (a) If
$$a = \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7}$$
,
 $b = a + a^2 + a^4$,
 $c = a^3 + a^5 + a^6$,
show that b and c are the roots of the equation
 $x^2 + x + 2 = 0$. $2\frac{1}{2}$

(b) Express $\sin^7 \theta \cos^2 \theta$ as a sum of the series of multiples of θ . $2\frac{1}{2}$

7. (a) If
$$x + iy = \cos(u + iv)$$
 show that
 $(1 + x)^2 + y^2 = (\cosh v + \cos u)^2$. $2\frac{1}{2}$

1448//KD/464

(b) If $\tan y = \tan \alpha \tanh \beta$ and $\tan z = \cot \alpha \tanh \beta$, prove that $\tan (y + z) = \sinh 2\beta \csc 2\alpha$. $2\frac{1}{2}$

SECTION-IV

8. (a) If
$$i^{\alpha + i\beta} = a + ib$$
 prove that $a^2 + b^2 = e^{-(4n+1)\pi\beta}$. $2\frac{1}{2}$

(b) Solve the equation

$$\tan^{-1}\frac{1}{4} + 2\tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{6} + \tan^{-1}\frac{1}{x} = \frac{\pi}{4}.$$
 2¹/₂

9. (a) Separate $\tanh^{-1}(x + iy)$ into real and imaginary parts. $2\frac{1}{2}$

(b) Sum to *n* terms the series $\cot^{-1}(2.1^2) + \cot^{-1}(2.2^2) + \cot^{-1}(2.3^2) + \dots 2^{1/2}$