GSE/M-20

MATHEMATICS

(Number Theory and Trigonometry)
Paper: BM-121

Time : Three Hours]
[Maximum Marks : 27

Note : Attempt five questions in all. Question No. 1 is compulsory. Select one question from each section.

Compulsory Question

1. (a) If $a|c, b| c$ and $(a, b)=1$, then $a b \mid c$.
(b) If a is odd, prove that $a^{2} \equiv 1(\bmod 8) . \quad 1$
(c) Evaluate $d(630)$. $11 / 2$
(d) Prove that $\cosh ^{-1} x-\sinh ^{2} x=1$. $11 / 2$
(e) Prove that $\sinh ^{-1} x=-i \sin ^{-1}(i x)$. $11 / 2$

SECTION-I

2. (a) Find the g.c.d. of 275 and 200 , and express it in the form $m .275+n .200$. $2^{1 / 2}$
(b) Solve the congruence $15 x \equiv 12(\bmod 21)$. $2^{1 / 2}$
3. (a) Show that $2^{48} \equiv 1(\bmod 105)$. $2^{1 / 2}$
(b) Find the remainder when 2.28 ! is divided by $31.2^{1 / 2}$

SECTION-II

4. (a) Solve the congruences $x \equiv 2(\bmod 3), x \equiv 3(\bmod 5)$, $x \equiv 5(\bmod 2)$ simultaneously. $2^{1 / 2}$]
(b) Show that $2,4,6, \ldots \ldots \ldots . ., 2 m$ is a CRS $(\bmod m)$ if m is odd. $2^{1 / 2}$
5. (a) Find highest power of 7 contained in 1000!. $2^{1 / 2}$
(b) Show that 3 is a quadratic residue of 23 . $2^{1 / 2}$

SECTION-III

6. (a) If $a=\cos \frac{2 \pi}{7}+i \sin \frac{2 \pi}{7}$,
$b=a+a^{2}+a^{4}$,
$c=a^{3}+a^{5}+a^{6}$,
show that b and c are the roots of the equation $x^{2}+x+2=0$.
(b) Express $\sin ^{7} \theta \cos ^{2} \theta$ as a sum of the series of multiples of θ.
7. (a) If $x+i y=\cos (u+i v)$ show that

$$
\begin{equation*}
(1+x)^{2}+y^{2}=(\cosh v+\cos u)^{2} . \tag{1/2}
\end{equation*}
$$

(b) If $\tan y=\tan \alpha \tanh \beta$ and $\tan z=\cot \alpha \tanh \beta$, prove that $\tan (y+z)=\sinh 2 \beta \operatorname{cosec} 2 \alpha$.

SECTION-IV

8. (a) If $i^{\alpha+i \beta}=a+i b$ prove that $a^{2}+b^{2}=e^{-(4 n+1) \pi \beta} . \quad 2^{1 / 2}$
(b) Solve the equation

$$
\tan ^{-1} \frac{1}{4}+2 \tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{6}+\tan ^{-1} \frac{1}{x}=\frac{\pi}{4} .
$$

9. (a) Separate $\tanh ^{-1}(x+i y)$ into real and imaginary parts.
(b) Sum to n terms the series

$$
\cot ^{-1}\left(2.1^{2}\right)+\cot ^{-1}\left(2.2^{2}\right)+\cot ^{-1}\left(2.3^{2}\right)+\ldots . . \quad 21 / 2
$$

