GSE/M-20

1450
MATHEMATICS
(Vector Calculus)
Paper: BM-123
Time : Three Hours]
[Maximum Marks : 27
Note : Attempt five questions in all. Question No. 1 is compulsory. Select one question from each section.

Compulsory Question

1. (a) Find the volume of a parallelopiped whose edges are represented by $\vec{a}=2 \hat{i}-3 \hat{j}+4 \hat{k}, \vec{b}=\hat{i}+2 \hat{j}-\hat{k}$ and $\vec{c}=3 \hat{i}-\hat{j}+2 \hat{k}$.
(b) If the vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are coplanar, then show that $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=0$.
(c) Find a so that the vector

$$
\vec{f}=\left(a x y-z^{3}\right) \hat{i}+(a-2) x^{2} \hat{j}+(1-a) x z^{2} \hat{k}
$$

is irrotational.
(d) Show that $\operatorname{div}($ curl $\vec{f})=0$. 1
(e) Determine the transformation from cylindrical to rectangular co-ordinates. 1

SECTION-I

2. (a) Show that the vectors $\vec{a}-2 \vec{b}+3 \vec{c},-2 \vec{a}+3 \vec{b}-4 \vec{c}$ and $\vec{a}-3 \vec{b}+5 \vec{c}$ are coplanar. $\quad 2 \frac{1}{2}$
(b) The necessary and sufficient condition for the vector function \vec{f} of a scalar variable t to have a constant magnitude is $\vec{f} \cdot \frac{d \vec{f}}{d t}=0$.
3. (a) Show that $\vec{a} \times(\vec{b} \times \vec{c}), \vec{b} \times(\vec{c} \times \vec{a})$ and $\vec{c} \times(\vec{a} \times \vec{b})$ are coplanar. $21 / 2$
(b) The necessary and sufficient condition for the vector function \vec{f} of a scalar variable t to have constant direction is $\vec{f} \times \frac{d \vec{f}}{d t}=0$.

SECTION-II

4. (a) For any vector \vec{a}, show that $\nabla(\vec{a} \cdot \vec{r})=\vec{a}$, where \vec{r} is the position vector of a point. Hence show that $\operatorname{grad}[\vec{r} \vec{a} \vec{b}]=\vec{a} \times \vec{b}$. 2^{112}
(b) Prove that $\nabla^{2}[r \vec{r}]=\left(\frac{4}{r}\right) \vec{r}$, where $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, and $|\vec{r}|=r$.
5. (a) If div $(\phi(r) \vec{r})=0$ where $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, and $|\vec{r}|=r$, then prove that $\phi(r)=\frac{c}{r^{3}}$.
(b) Prove that $\nabla^{2}\left[\frac{x}{r^{2}}\right]=-\frac{2 x}{r^{4}}$.

SECTION-III

6. (a) Express the vector $\overrightarrow{\mathrm{A}}=z \hat{i}-2 x \hat{j}+y \hat{k}$ in cylindrical coordinates. Hence determine $\mathrm{A}_{\rho}, \mathrm{A}_{\theta}$ and A_{z}. $\quad 21 / 2$
(b) If (r, θ, ϕ) are spherical co-ordinates, show that $\nabla\left(\frac{1}{r}\right)=\nabla \times(\cos \theta \nabla \phi)$.
7. (a) Transform the function $\vec{f}=\mathrm{P} \hat{e}_{\rho}+\mathrm{P} \hat{e}_{\phi}$ from cylindrical to cartesian co-ordinates.
(b) Express the velocity \vec{v} and accleration \vec{a} of a particle in cylindrical co-ordinates.

SECTION-IV

8. (a) Evaluate the line integral $\int_{\mathrm{C}} \vec{f} \cdot d \vec{r}$ about the traingle whose vertices are $(1,0),(0,1)$ and $(-1,0)$ where $\vec{f}=y^{2} \hat{i}-x^{2} \hat{j}$. $2^{1 / 2}$
(b) Verify Green's theorem in the plane for $\oint_{\mathrm{C}}\left(x y+y^{2}\right) d x+x^{2} d y$, where C is the closed curve of the region bounded by $y=x$ and $y=x^{2}$. 3
9. (a) Evaluate $\iint_{\mathrm{S}} \vec{f} \cdot \hat{n} d \mathrm{~S}$, where $\vec{f}=\left(x+y^{2}\right) \hat{i}-2 x \hat{j}+2 y z \hat{k}$ and S is the surface of the plane $2 x+y+2 z=6$ in the first octant.
(b) Evaluate $\oint_{\mathrm{C}} f \cdot d \vec{r}$ by Stoke's theorem, where $\vec{f}=y^{2} \hat{i}+x^{2} \hat{j}-(x+z) \hat{k}$ and C is the boundary of triangle with vertices at $(0,0,0)(1,0,0)$ and $(1,1,0)$.
