Roll No.

Total Pages : 4

1474

GSE/M-20 MATHEMATICS (Vector Calculus) Paper : BM-123

Time : Three Hours]

[Maximum Marks : 40

Note : Attempt *five* questions in all. Question No. 1 is compulsory. Select *one* question from each section.

Compulsory Question

- 1. (a) Find the volume of cuboid whose coterminous edges are $11\hat{i}$, $2\hat{j}$, $13\hat{k}$. 1
 - (b) Find the unit tangent vector to any point on the curve $x = a \cos t$, $y = a \sin t$, z = bt. 1
 - (c) If \vec{f} and \vec{g} are irrotational, prove that $\vec{f} \times \vec{g}$ is solenoidal.
 - (d) Define Orthogonal curvilinear co-ordinates. 2
 - (e) Show that $\oint \vec{r} \cdot d\vec{r} = 0.$ 2

SECTION-I

2. (a) Show that
$$[\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}] = 2[\vec{a}, \vec{b}, \vec{c}].$$
 4

(b) If \vec{a} , \vec{b} , \vec{c} are three vectors such that $\vec{a} \times \vec{b} = \vec{c}$ and $\vec{b} \times \vec{c} = \vec{a}$, show that three vectors \vec{a} , \vec{b} , \vec{c} are orthogonal in pairs and $|\vec{b}|=1$, $|\vec{c}|=|\vec{a}|$.

[P.T.O.

- 3. (a) A particle moves along the curves, $x = 3t^2$, $y = t^2 2t$, $z = t^3$. Find its velocity and acceleration at t = 1 in the direction of vector $\vec{a} = \hat{i} + \hat{j} \hat{k}$.
 - (b) Prove that the necessary and sufficient condition for the vector function \vec{f} of a scalar variable *t* to have a

constant magnitude is
$$\vec{f} \cdot \frac{d\vec{f}}{dt} = 0.$$
 4

SECTION-II

4. (a) Prove that
$$\nabla^2(\vec{r} \cdot \vec{r}) = \left(\frac{4}{r}\right)\vec{r}$$
, where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$
and $r = |\vec{r}|$.

(b) Find the directional derivative of the function

 $\phi(x, y) = \frac{xy}{x^2 + y^2}$ at the point (0, 1) along a line making an angle of 30° with +ve direction of *x*-axis. 4

5. (a) Evaluate div.
$$\left(\frac{\vec{r}}{r}\right)$$
, where $\vec{r} = x\vec{i} + y\hat{j} + z\hat{k}$ and $|\vec{r}| = r$.

(b) Show that the function
$$\frac{1}{r}$$
, where
 $r = |\vec{r}| = \sqrt{x^2 + y^2 + z^2}$

is harmonic function, provided $r \neq 0$. 4 1474//KD/459 2

SECTION-III

6. (a) Show that in orthogonal coordinates

$$\nabla \cdot (\vec{\mathbf{A}}_1 \ \hat{e}_1) = \frac{1}{h_1 h_2 h_3} \frac{\partial}{\partial u} (\mathbf{A}_1 h_2 h_3).$$

(b) Prove that cylindrical co-ordinates system is selfreciprocal. 4

7. (a) Prove that
$$\frac{d}{dt}(\hat{e}_{\phi}) = -\sin\theta \frac{d\phi}{dt}\hat{e}_r - \cos\theta \frac{d\phi}{dt}\hat{e}_{\phi}.$$
 4

(b) Transform the following function from spherical to cartesian system :

$$\vec{f} = 3ar^2 \sin\theta \cos\phi \,\hat{e}_r + 2a^2r \cos\theta \sin\phi \,\hat{e}_\theta + r^3 \,\hat{e}_\phi. \quad 4$$

SECTION-IV

- **8.** (a) State and prove Green's theorem. 4
 - (b) Find the circulation of \vec{f} around the curve C, where

$$\vec{f} = y\hat{i} + z\hat{j} + x\hat{k}$$
 and C is the circle $x^2 + y^2 = 1$, $z = 0$.
4

9. (a) Evaluate
$$\iint_{S} \vec{f} \cdot \hat{n} \, dS$$
, where $\vec{f} = 18z\hat{i} - 12\hat{j} + 3y\hat{k}$ and

S is the surface of the plane 2x + 3y + 6z = 12 which lies in the first octant. 4

1474//KD/459

(b) If
$$\vec{r} = 5t^2\hat{i} + t\hat{j} - t^3\hat{k}$$
, prove that

$$\int_{1}^{2} \left[\vec{r} \times \frac{d^2 \vec{r}}{dt^2} \right] dt = -14\hat{i} = 75\hat{j} - 15\hat{k}.$$
4

1474//KD/459