Roll No.

Total Pages : 04

GSQ/D-20 1053 MATHEMATICS BM-351 Real Analysis

Time : Three Hours]

[Maximum Marks : 40

Note : Attempt *Five* questions in all. Select *one* question from each Section. Q. No. **1** is compulsory.

Compulsory Question

1. (a) If $f(x) = x, x \in [0, 1]$ and $P = \{0, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1\}$ be the partition of [0, 1], then compute L(f, P) and U(f, P). 2

(b) Prove the inequality
$$1 \le \int_0^1 e^{x^2} dx \le e$$
. $1\frac{1}{2}$

(c) Show that
$$\int_{1}^{\infty} \frac{\sin x}{x^{m}}$$
 converges absolutely if $m \ge 1$.

11/2

- (d) Show that the space (0, 1] with usual metric space is not complete.
- (e) Prove that usual metric space (R, d) is not compact. $1^{1/2}$

(2)L-1053

1

Section I

2. (a) Show that the function
$$f$$
 defined by $f(x) = x, x \in [0, 1]$ is integrable and $\int_0^1 f(x) dx = \frac{1}{2}$.

(b) By definition, prove that
$$\int_0^a \cos x \, dx = \sin a$$
, where *a* is a fixed number. 4

3. (a) If a function
$$f$$
 is continuous on $[a, b]$ and
 $F(x) = \int_{a}^{x} f(t) dt$, then F is differentiable on $[a, b]$
and $F' = f$.
4

(b) Evaluate
$$\int_0^1 \sqrt{1+x^4} dx$$
 by using mean value theorem.
4

Section II

4. (a) Examine the convergence of the improper integral :

$$\int_{-a}^{a} \frac{x \, dx}{\sqrt{a^2 - x^2}} \tag{4}$$

(b) Show that the integral
$$\int_0^\infty x^{n-1}e^{-x}dx$$
 is convergent
if $n > 0$.

(2)L-1053

5. (a) Evaluate
$$\int_0^a \frac{\log(1+\alpha x)}{1+x^2} dx, \alpha > 0$$
. 4

(b) Show that
$$\int_0^{\pi/2} \sin x \log(\sin x) dx$$
 is convergent with

the value
$$\log\left(\frac{2}{e}\right)$$
. 4

Section III

6.	(a)	The inte	rior set	of a subset	of a	metric	space is	the sthe
		largest o	open set	contained	in A.	Prove		4

- (b) If A and B are subsets of a metric space (X, d), then prove that : 4
 - (i) $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$
 - (ii) $A^{\circ} \cup B^{\circ} \subset (A \cup B)^{\circ}$
- 7. (a) Every Cauchy sequence is bounded in a metric space. Prove.4
 - (b) Let X be a metric space, then prove that :
 - (i) any intersection of closed sets in X is closed.
 - (ii) finite union of closed sets in X is closed. 4

Section IV

8. (a) A metric space is sequentially compact iff every infinite subset has a limit point.4

(2)L-1053

3

	(b)	Prove that continuous image of a compact metr	ic					
		space is compact.	4					
9.	(a)	A continuous image of a connected space	is					
		connected. Prove.	4					
	(b)	Every compact (sequentially-compact) metric spa						
		is complete. Prove.	4					

4