Roll No \qquad

GSQ/D-20
 MATHEMATICS
 BM-352
 Groups and Rings

1054

Time : Three Hours]

[Maximum Marks : 40
Note: Attempt Five questions in all, selecting one question from each Section. Q. No. 1 is compulsory.

(Compulsory Question)

1. (a) Prove that every subgroup of an abelian group is always normal. $1 \frac{1}{2}$
(b) Prove that identity mapping is the only inner automorphism for an abelian group. $\quad 1^{11 / 2}$
(c) Let $f: R \rightarrow R^{\prime}$ be a homomorphism. Then f is one to one if kerf $=\{0\} . \quad 11 / 2$
(d) Define Euclidean ring. $11 / 2$
(e) Define transposition. What do you mean by even and odd permutations ?

Section I

2. (a) Prove that order of every element of a finite group is finite and is less than or equal to the order of the group.
(b) Prove that every subgroup of a cyclic group is cyclic.
3. (a) Prove that the order of every element of a finite group is a divisor of the order of the group. 4
(b) If a group (G, \cdot) has four elements, show that it must be abelian.

Section II

4. (a) Prove that the set $\operatorname{Inn}(G)$ of all inner automorphisms of a group G is isomorphic to the quotient group $\mathrm{G} / \mathrm{Z}(\mathrm{G})$, where $\mathrm{Z}(\mathrm{G})$ is the centre of G .

4
(b) Let $f: G \rightarrow G$ be a homomorphism. Let f commutes with every inner automorphism of G. Show that $H=\left\{x \in G ; f^{2}(x)=f(x)\right\}$ is a normal subgroup of G. 4
5. (a) Let G^{\prime} be commutator subgroup of a group G . Then G is abelian iff $\mathrm{G}^{\prime}=\{\mathrm{e}\}$, where e is the identity element of G. 4
(b) Find the centre of the permutation group S_{3}. 4

Section III

6. (a) Show that every field is an integral domain. Also show by an example that every integral domain need not be a field.
(b) Let R be a commutative ring. An ideal S of R is a prime ideal iff for two ideals A, B of $\mathrm{R}, \mathrm{AB} \subseteq \mathrm{S}$ \Rightarrow either $\mathrm{A} \subseteq \mathrm{S}$ or $\mathrm{B} \subseteq \mathrm{S}$.
7. (a) Show that an ideal S of a commutative ring R with unity is maximal iff R / S is a field.
(b) Let f be a ring isomorphism of R onto R^{\prime}. show that if R^{\prime} is an integral domain, then so is $R .4$

Section IV

8. (a) Show that an element in a principal ideal domain is prime element iff it is irreducible.
(b) Show that $\sqrt{-5}$ is a prime element of the ring $z \sqrt{-5}=\{a+b \sqrt{-5}: a, b \in Z\}$.
9. (a) Prove that every principal ideal domain is a unique factorization domain.
(b) Show that the polynomial :

$$
1+x+x^{2}+x^{3}+x^{4}
$$

is irreducible over Q .

