Roll No.

Total Pages : 04

GSQ/D-20 1055 MATHEMATICS BM-353 Numerical Analysis

Time : Three Hours]

[Maximum Marks : 30

Note : Attempt *Five* questions in all, selecting *one* question from each Unit. Q. No. **1** is compulsory.

(Compulsory Question)

1.	(a)	Show that $\bigwedge_{y, z}^{2} x^{2}$ is independent of x, y, z.	11/2
	(b)	State Gauss's Forward Interpolation Formula.	11/2
	(c)	Define Poisson's distribution.	11/2
	(d)	State Simpson's 1/3rd quadrative formula.	11/2

Unit I

2. (a) State and prove Newton-Gregory Formula. 3

(b) Find the value of an annuity at $5\frac{3}{8}\%$, given the following table : 3

Rate per cent	4	$4\frac{1}{2}$	5	$5\frac{1}{2}$	6
Annuity value	17.29203	16.28889	15.37245	14.53375	13.76483

(2)L-1055

1

3. (a) Given the following data, find f(x) in polynomial process of (x-5): 3

x	0	2	3	4	7	9
f(x)	4	26	58	112	466	922

(b) The values of function f(x) for values of x are given as f(1) = 4, f(2) = 5, f(7) = 5, f(8) = 4. Find values of f(6) and also value for x for which f(x) is maximum or minimum. 3

Unit II

- 4. (a) Derive Gauss Backward Interpolation formula. 3
 (b) Apply Bessel's formula for finding the values of y for x = 3.75 given that : 3
 f (2.5) = 24.145, f (3.0) = 22.043, f (3.5) = 20.225, f (4.0) = 18.644, f (4.5) = 17.262, f (5.0) = 16.047.
- 5. (a) Find the probability distribution of the number of doublets in 4 throws of a pair of dice.3
 - (b) A manufacturer of bulb knows that 5% of his production is defective. If he sells bulbs in boxes of 100 and guarantees that not more than 4 bulbs will be defective, what is the approximate probability that a box will fail to meet the guaranteed quality? (Take $e^{-5} = 0.0067$) 3

(2)L-1055

Unit III

6. (a) The distance(s) covered by a car in a given time (t) is given in the following data : 3

Time (minutes)	12	14	18	20	24
Distance (km)	14	18	23	25	34

Find the acceleration of the car at t = 17.

(b) Find the largest eigen values and the corresponding eigen-vector of the matrices : **3**

$$\begin{array}{ccccc}
-1 & 1 & 2 \\
0 & 1 & -1 \\
4 & -2 & -9
\end{array}$$

7. Transform the matrix $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ to tri-diagonal form

by Given's method. Find the eigen vector corresponding to the largest eigen value from the eigen vectors of the tri-diagonal matrix. **6**

Unit IV

8.	(a)	Evaluate $\int_0^4 e^x dx$, by Simpson's one-third rule u	sing
		the data :	3
		$e = 2.72, e^2 = 7.39, e^3 = 20.09, e^4 = 54.60$	

3

(2)L-1055

(b) Apply Runge-Kutta method to solve
$$\frac{dy}{dx} = x + y$$
;
 $y(0) = 1$ for $x = 0.1$. 3

9. (a) Solve the following by Euler's modified method

$$\frac{dy}{dx} = \log_{10} (x + y), \text{ at } x = 1.2 \text{ and } 1.4 \text{ with } h = 0.2,$$
given $y(0) = 2.$
3

given
$$y(0) = 2$$
. 3
(b) Use Picard's method to find the third approximation
of the following differential equation : 3
 $\frac{dy}{dx} = y - 1, y(0) = 2$

$$\frac{dy}{dx} = y - 1, \ y(0) = 2$$