Roll No \qquad

GSQ/D-20

1055
MATHEMATICS
BM-353
Numerical Analysis

Time : Three Hours]

[Maximum Marks : 30
Note: Attempt Five questions in all, selecting one question from each Unit. Q. No. 1 is compulsory.

(Compulsory Question)

1. (a) Show that $\frac{\Delta^{2}}{y, z} x^{2}$ is independent of x, y, z. $1^{1 / 2}$
(b) State Gauss's Forward Interpolation Formula. $11 / 2$
(c) Define Poisson's distribution. $1 \frac{1}{2}$
(d) State Simpson's $1 / 3$ rd quadrative formula. $11 / 2$

Unit I

2. (a) State and prove Newton-Gregory Formula.
(b) Find the value of an annuity at $5 \frac{3}{8} \%$, given the following table :

Rate per cent	4	$4 \frac{1}{2}$	5	$5 \frac{1}{2}$	6
Annuity value	17.29203	16.28889	15.37245	14.53375	13.76483

(2)L-1055
3. (a) Given the following data, find $f(x)$ in polynomial process of ($\mathrm{X}-5$) :

x	0	2	3	4	7	9
$f(x)$	4	26	58	112	466	922

(b) The values of function $f(x)$ for values of x are given as $f(1)=4, f(2)=5, f(7)=5, f(8)=4$. Find values of $f(6)$ and also value for x for which $f(x)$ is maximum or minimum. 3

Unit II

4. (a) Derive Gauss Backward Interpolation formula. 3
(b) Apply Bessel's formula for finding the values of y for $x=3.75$ given that :
$f(2.5)=24.145, f(3.0)=22.043, f(3.5)=20.225$, $f(4.0)=18.644, f(4.5)=17.262, f(5.0)=16.047$.
5. (a) Find the probability distribution of the number of doublets in 4 throws of a pair of dice.
(b) A manufacturer of bulb knows that 5% of his production is defective. If he sells bulbs in boxes of 100 and guarantees that not more than 4 bulbs will be defective, what is the approximate probability that a box will fail to meet the guaranteed quality?
(Take $\mathrm{e}^{-5}=0.0067$)

Unit III

6. (a) The distance(s) covered by a car in a given time (t) is given in the following data :

Time (minutes)	12	14	18	20	24
Distance (km)	14	18	23	25	34

Find the acceleration of the car at $\mathrm{t}=17$.
(b) Find the largest eigen values and the corresponding eigen-vector of the matrices :

$$
\left[\begin{array}{ccc}
-1 & 1 & 2 \\
0 & 1 & -1 \\
4 & -2 & -9
\end{array}\right]
$$

7. Transform the matrix $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$ to tri-diagonal form by Given's method. Find the eigen vector corresponding to the largest eigen value from the eigen vectors of the tri-diagonal matrix.

Unit IV

8. (a) Evaluate $\int_{0}^{4} e^{x} d x$, by Simpson's one-third rule using the data :
$e=2.72, e^{2}=7.39, e^{3}=20.09, e^{4}=54.60$
(2)L-1055
(b) Apply Runge-Kutta method to solve $\frac{d y}{d x}=x+y$;

$$
y(0)=1 \text { for } x=0.1
$$

9. (a) Solve the following by Euler's modified method $\frac{d y}{d x}=\log _{10}(x+y)$, at $x=1.2$ and 1.4 with $h=0.2$, given $y(0)=2$.
(b) Use Picard's method to find the third approximation of the following differential equation :

$$
\frac{d y}{d x}=y-1, y(0)=2
$$

