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1. (i) Write the statement of Lagrange’s mean

value theorem. 2

(ii) State Schwarz theorem. 2

(iii) Define screw-curvature. What is its

magnitude. 2

(iv) Define osculating plane. 2

2. (i) Every function defined and continuous on a

closed interval attains its bounds in that

interval. Prove it. 4

(ii) Verify Lagrange’s mean value theorem for

4

Time allowed : 3 Hours Maximum Marks : 40

Note : Attempt five questions in all, selecting one

question from each unit. Question No. 1 is

compulsory. All questions carry equal marks.
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3. (i) Show that : 4

(ii) Show that the function defined by = ² is

uniformly continuous in [–2, 2]. 4

is continuous at (0, 0). 4

(ii) State and prove Euler’s theorem. 4

5. (i) Let : R² R be defined as :

Show that lim ( , ) does not exist. 4

(ii) If = 2 ² – ² + 3 ², where

4
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UNIT-II

4. (i) Show that the function defined by :f
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UNIT-III

6. (i) Show that the function

is continuous and possesses first order

partial derivatives but not differentiable at

the origin. 4

(ii) A rectangular box, open at the top, is to have

a volume of 27/2 cubic ft. Find the

dimensions of the box requiring least

material for construction. 4

7. (i) Find the volume of the largest rectangular

parallelopiped that can be inscribed in the

ellipsoid 4

(ii) Give an example of a function f(x, y) for

which . 4

2 cost + 2 sint + 6 t , – t < . 4

(ii) Prove that : 4
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UNIT-IV

8. (i) Find the normal form of the curve
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9. (i) Show that the radius of spherical curvature

of a circular helix = a cos , = a sin

= a cot is equal to the radius of circular

curvature. 4

(ii) Find the involutes and evolutes of circular

helix

= a cos ; = a sin , = a tan . 4
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