ADVANCED CALCULUS

Paper - BM-231
Time allowed : 3 Hours Maximum Marks : 40
Note: Attempt five questions in all, selecting one question from each unit. Question No. 1 is compulsory. All questions carry equal marks.

Compulsory Question

1. (i) Write the statement of Lagrange's mean value theorem. 2
(ii) State Schwarz theorem. 2
(iii) Define screw-curvature. What is its magnitude. 2
(iv) Define osculating plane. 2 UNIT-I
2. (i) Every function defined and continuous on a closed interval attains its bounds in that interval. Prove it. 4
(ii) Verify Lagrange's mean value theorem for $f(x)=\sin x$ in $\left[\frac{\pi}{2}, \frac{5 \pi}{2}\right]$.
3. (i) Show that:

$$
\lim _{x \rightarrow 0} \frac{(1+x)^{\frac{1}{x}}-e+\frac{e x}{2}-\frac{11}{24} e x^{2}}{x^{3}}=-\frac{7 e}{16}
$$

(ii) Show that the function defined by $f(x)=x^{2}$ is uniformly continuous in $[-2,2]$.

UNIT-II

4. (i) Show that the function f defined by :
$f(x, y)=\left\{\begin{array}{ccc}\frac{x^{3}-y^{3}}{x^{2}+y^{2}} \\ 0 & ; & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{array}\right.$
is continuous at $(0,0)$. 4
(ii) State and prove Euler's theorem.
5. (i) Let $f: \mathrm{R}^{2} \rightarrow \mathrm{R}$ be defined as:
$f(x, y)=\left\{\begin{array}{ccc}\frac{x y}{x^{2}+y^{2}} & ; & (x, y) \neq(0,0) \\ 0 & & (x, y)=(0,0)\end{array}\right.$
Show that $\lim f(x, y)$ does not exist.

$$
(x, y) \rightarrow(0,0)
$$

(ii) If $z=2 u^{2}-v^{2}+3 w^{2}$, where
$u=x e^{y}, v=y e^{-x}, \quad w=\frac{y}{x}$
Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

UNIT-III

6. (i) Show that the function
$f(x, y)=\left\{\begin{array}{ccc}\frac{x^{3}-y^{3}}{x^{2}+y^{2}} & ; & (x, y) \neq(0,0) \\ 0 & & (x, y)=(0,0)\end{array}\right.$
is continuous and possesses first order partial derivatives but not differentiable at the origin. 4
(ii) A rectangular box, open at the top, is to have a volume of $27 / 2$ cubic ft. Find the dimensions of the box requiring least material for construction. 4
7. (i) Find the volume of the largest rectangular parallelopiped that can be inscribed in the ellipsoid 4 $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
(ii) Give an example of a function $\mathrm{f}(\mathrm{x}, \mathrm{y})$ for which $f x y^{(0,0)} \neq f y x^{(0,0)}$.

UNIT-IV

8. (i) Find the normal form of the curve $2 \operatorname{cost} \hat{i}+2 \operatorname{sint} \hat{j}+6 \mathrm{t} \hat{k},-\infty \mathrm{t}<\infty$. 4
(ii) Prove that: $\frac{d \hat{n}}{d s}=i \hat{b}-k \hat{t}$.
9. (i) Show that the radius of spherical curvature of a circular helix $x=\mathrm{a} \cos \theta, y=\mathrm{a} \sin \theta$, $z=\mathrm{a} \theta \cot \alpha$ is equal to the radius of circular curvature. 4
(ii) Find the involutes and evolutes of circular helix $x=\mathrm{a} \cos u ; y=\mathrm{a} \sin u, z=\mathrm{a} u \tan \alpha$. 4
