Roll No

\qquad Total Pages : 04

BCA/D-20

1192

MATHEMATICAL FOUNDATION-I
 BCA-113

Time : Three Hours]
[Maximum Marks : 80

Note : Attempt Five questions in all, selecting one question from each Section. Q. No. 1 is compulsory.

(Compulsory Question)

1. (a) Verify that $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$, where $A=\{2,3$, $4,5,6\}, B=\{3,6,7,8\}$ are subsets of $U=\{1,2$, $3,4,5,6,7,8\}$.
(b) Find r, if ${ }^{10} \mathrm{P}_{r+1}:{ }^{11} \mathrm{P}_{\mathrm{r}}=30: 11$. 3
(c) Find $\frac{d y}{d x}$, when $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
(d) Show that $x^{2}+4 y=0$ is a solution of

$$
\left(\frac{d y}{d x}\right)^{2}+x \frac{d y}{d x}-y=0
$$

(e) Solve the differential equation :

$$
\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+y=0
$$

Unit I

2. (a) In a class of 1000 students, 625 students pass in Mathematics and 525 pass in English. How many students pass in Mathematics only and how many pass in English only ?

8
(b) In a set of integers, let a relation R be defined as $a \mathrm{R} b$ if and only if $a-b$ is even. Prove thaet R is an equivalence Relation. 8
3. (a) Find the number of arrangements that can be made out of the letter of the word PERMUTATION. In how many of these 5 vowels are together ? 8
(b) A polygon has 44 diagonals. Find the number of its sides.

Unit II

4. (a) Using $\in-\delta$ definition, prove that : 8

$$
\lim _{x \rightarrow a} \cos x=\cos a, \text { where } a \in \mathrm{R}
$$

(b) Differentiate :

$$
\begin{equation*}
\tan ^{-1} \frac{\sqrt{1+x^{2}}-1}{x} \text { w.r.t. } \sin ^{-1} \frac{2 x}{1+x^{2}} \tag{8}
\end{equation*}
$$

5. (a) If $x^{p} y^{q}=(x+y)^{p+q}$, prove that: 8

$$
\frac{d y}{d x}=\frac{y}{x}
$$

(b) If $y=e^{\tan ^{-1} x}$, prove that:

$$
\left(1+x^{2}\right) y_{2}+(2 x-1) y_{1}=0
$$

Unit III

6. (a) Find the differential equation of the family of the curves $y=\mathrm{A} e^{3 x}+\mathrm{B} e^{5 x}$, where A and B are arbitrary constants. 8
(b) Solve the differential equation :

8

$$
\left(1+x^{2}\right) \frac{d y}{d x}+2 x y-4 x^{2}=0
$$

7. (a) Solve the differential equation :

$$
(y \log x-1) y d x=x d y
$$

(b) Verify that the differential equation :

$$
x d y+y d y=a^{2} \frac{(x d y-y d x)}{x^{2}+y^{2}}
$$

is exact and solve it.

Unit IV

8. (a) Solve the differential equation :

8

$$
\frac{d^{3} y}{d x^{3}}+\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+y=\sin 2 x
$$

(b) Solve the differential equation :

8

$$
\frac{d^{2} y}{d x^{2}}+y=x-e^{2 x}
$$

9. (a) Solve the differential equation :

8

$$
x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}-4 y=x^{4}
$$

(b) Solve the differential equation : 8

$$
(3 x+2)^{2} \frac{d^{2} y}{d x^{2}}+3(3 x+2) \frac{d y}{d x}-36 y=3 x^{2}+4 x+1
$$

