Roll No.

Total Pages: 4

GSM/D-20

914

PARTIAL DIFFERENTIAL EQUATIONS

Paper - BM-232

Time allowed: 3 Hours Maximum Marks: 40

Note: Attempt five questions in all, selecting at least one question from each unit. Question No. 1 is compulsory.

Compulsory Question

- 1. (i) Find the differential equation by eliminating the arbitrary constants λ and A from the equation $z = Ae^{-\lambda^2 t}\cos \lambda x$. 1½
 - (ii) Classify the differential equation $1\frac{1}{2}$ $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$
 - (iii) Write the one dimensional and two dimensional Heat Equation. 2
 - (iv) Examine the compatibility of system of partial equations: $1\frac{1}{2}$

$$p = 3x + 6y$$
$$q = 2x - 4y.$$

914/K/51

(v) Find the complete integral of partial differential equation $p - 3x^2 = q^2 - y$. 1½

UNIT-I

- 2. (i) Find out partial differential equation by eliminating arbitrary function from : 4 $z = \left(\frac{xy}{z}\right)$
 - (ii) Solve the partial differential equation : 4 $p + 3q = z + \cot(y 3x)$
- 3. (i) Find the complete solution of partial differential equation $2xz px^2 2qxy + pq = 0$ by using Charpit's method.
 - (ii) Find the complete integral by Jacobi's method for the equation:

 4

$$2x^{2}y\left(\frac{\partial u}{\partial x}\right)^{2}\left(\frac{\partial u}{\partial x}\right) - x^{2}\left(\frac{\partial u}{\partial y}\right) - 2y\left(\frac{\partial u}{\partial x}\right)^{2} = 0$$

UNIT-II

4. (i) Solve the partial differential equation: 4 $\frac{\partial^3 z}{\partial x^3} - 3 \frac{\partial^3 z}{\partial x^3 \partial y} + 4 \frac{\partial^3 z}{\partial y^3} = e^{x+2y}$

(ii) Solve:
$$(D^3 - 4D^2D' + 4D'^2D)Z = \cos(2x + y)$$

5. (i) Solve:
$$(x^2D^2 - xyDD' - 2y^2D'^2 + xD - 2yD')Z = \log\left(\frac{y}{x}\right) - \frac{1}{2} .$$

(ii) Solve:
$$(D^2 - 2DD' + D'^2)Z = 12xy$$
.

UNIT-III

6. (i) Classify and reduce the equation:

$$\frac{\partial^2 z}{\partial x^2} - x^2 \frac{\partial^2 z}{\partial y^2} = 0 \quad \text{to canonical form.}$$

(ii) Solve
$$r + 5s + 6t = 0$$
.

7. (i) Solve
$$ry^2 + 2xys + x^2t + px + qy = 0$$
. 4

(ii) Solve
$$rt - s^2 + 1 = 0$$
 by Monge's method. 4

UNIT-IV

8. (i) Solve the wave equation:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$$

by the method of separation of variables. 4

(ii) Solve the Cauchy problem for the equation $\frac{\partial^2 z}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 z}{\partial t^2} = 0, c > 0 \text{ subject to the conditions}$

$$z(x, 0) = f(x) \text{ and } \left[\frac{\partial z}{\partial t}\right]_{t=0} = g(x).$$

9. (i) Find the real characteristics of

$$y \frac{\partial^2 z}{\partial x^2} + (x+y) \frac{\partial^2 z}{\partial x \partial y} + x \frac{\partial^2 z}{\partial y^2} = 0.$$

P.T.O.

(ii) Solve:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 , 0 < x < a \text{ and } 0 < y < a$$

4

4

subject to the boundary conditions

$$4(x, 0) = 4(x, b) = 0$$

$$4(0, y) = 0$$

$$4(a, y) = \pi y(b - y).$$

914/K/51