GSM/D-20

915

STATICS

Paper - BM-233
Time allowed : 3 Hours Maximum Marks : 40
Note: Attempt five questions in all, selecting at least one question from each unit. Question No. 1 is compulsory.

Compulsory Question

1. (i) Find the resultant of two unlike parallel forces 40 N and 5 N acting at A and B respectively where $\mathrm{AB}=40 \mathrm{~cm}$. 2
(ii) If a force F be resolved into component forces and if one component be at right angles to F and equal to $\sqrt{3} \mathrm{~F}$ in magnitude. Find the direction and magnitude of the other component. 2
(iii) Prove that a given system of forces may be replaced by two forces, one of which acts along a given line OA.2

(iv) State converse of Lame's theorem. 1
(v) Define coefficient of friction. 1

UNIT-I

2. (i) Three forces $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ acting at a point O are in equilibrium and the angle between P and Q is double the angle between P and R . show that $\mathrm{R}^{2}=\mathrm{Q}(\mathrm{Q}-\mathrm{P})$. 4
(ii) Forces $\mathrm{P}, 3 \mathrm{P}, 2 \mathrm{P}, 5 \mathrm{P}$ act along the sides AB , BC, CD and DA of the square ABCD . Find the magnitude and direction of their resultant and prove that it meets AD produced at a point E such that AE : DE $=5: 4$. 4
3. (i) A uniform rod of length $2 l$ and weight w is laying across two pegs on the same level d metre apart. If neither peg can stand a stress greater than T, show that: 4 $l-\frac{d(W-T)}{W}$
(ii) ABCD is a rectangle with $\mathrm{AB}=4 \mathrm{~m}$ and $\mathrm{BC}=$ 3 m . Along $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}$ and AC act forces $2,7,6,10$ and 5 kg . respectively. Show that the system reduces to a couple and find its moment.

UNIT-II

4. (i) A beam whose centre of gravity divides it into two portions a and b is placed inside a smooth sphere. Show that if θ be its inclination to the horizon in the position of equilibrium and 2α be the angle subtended by the beam at the centre of the sphere then $\tan \theta=\frac{b-a}{b+a} \tan \alpha$.
(ii) A heavy body is placed on a rough inclined plane of inclination α greater than the angle of friction, being acted upon by a force parallel to the plane and along a line of greatest slope, to find the limits between which the force must lie. 4
5. (i) One end of a uniform rod is attached to a hinge and the other end is supported by a string attached to the extremity of the rod; the rod and the string are inclined at the same angle θ to the horizontal. If W be the weight of the rod, show that the reaction at the hinge is $1 / 4 \mathrm{~W} \sqrt{8+\operatorname{cosec}^{2} \theta}$. Also find the tension in the string.

UNIT-III

6. A heavy uniform rod of length 2α rests with its ends in contact with two smooth inclined planes of inclination α and β to the horizon. If θ be the inclination of the rod to the horizon, prove by principle of virtual work that $\tan \theta=1 / 2[\cot \alpha-\cot \beta]$.
7. \quad A force P acts along the axis of x and another force $n P$ along a generator of the cylinder $x^{2}+y^{2}=a^{2}$. Show that the central axis lies on the cylinder $n^{2}(n x-z)^{2}+\left(1+n^{2}\right)^{2} y^{2}=n^{4} \alpha^{2}$.

UNIT-IV

8. Wrenches of the same pitch p act along the edges of a regular tetrahedron $A B C D$ of side a. If the intensities of the wrenches along $A B, D C$ are the same and also those along $B C, D A$ and $D B, C A$; show that the pitch of the equivalent wrench is $\left(p+\frac{a}{2 \sqrt{2}}\right)$
9. (i) To find the equation to the null plane of a given point ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) referred to any axis $O x$, $O y, O z$.
(ii) A heavy uniform rod rests with one end against a smooth vertical wall and with a point in its length resting on a smooth peg. Find the position of equilibrium and show that it is unstable. 4
