BUSINESS MATHEMATICS-I

Paper-BC-105

Time Allowed : 3 Hours] [Maximum Marks : 80

Note : Attempt five questions in all, Question No. 1 is compulsory. Rest questions carry equal marks.

1. (i) Prove that $\log _{9} 27-\log _{27} 9=\frac{5}{6}$.
(ii) Find the sum of 20 terms of series :

$$
2-4+6-8+10-12+
$$

\qquad
(iii) Find the second derivative of $\frac{\log x}{x}$. 4
(iv) For what value of x, the given matrix :

$$
\mathrm{A}=\left[\begin{array}{cc}
3-2 x & x+1 \tag{4}\\
2 & 4
\end{array}\right] \text { is a singular matrix? }
$$

(v) Find the effective rate of interest 6\% p.a. compounded continuously.
2. (i) If $x=1+\log _{a} b c, y=1+\log _{b} c a, z=1+\log _{c} a b$, prove that $x y z=x y+y z+z x$.
(ii) Simplify by using log tables :

$$
\begin{equation*}
\frac{(17.5)^{1 / 2}+(15.2)^{-1 / 3}}{(56.3)^{3 / 5}-(12.4)^{1 / 4}} . \tag{7}
\end{equation*}
$$

3. (i) Find the sum of the series .6+.66+.666+........to n terms.
(ii) A machine depreciates in values at the rate of 10% every year on reducing balance. If the original cost be ₹ 20,000 and the ultimate scrap value ₹ 13,122 , find the effective life of the machine. $71 / 2$
4. (i) Differentiate $x^{1 / x}+(\log x)^{x}$ w.r.t. x.
(ii) If $x^{\mathrm{p}}+y^{\mathrm{q}}=(x+y)^{\mathrm{p+q}}$, then prove that $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=0 . \quad 7^{1 / 2}$
5. (i) A window is in form of a rectangle surmounted by a semi-circular opening. The total perimeter of the window is 10 m . Find the dimensions of the windwo so as to admit maximum light through the whole opening.
(ii) A Sitar manufacturer can still ' x ' sitars per week at ₹ ' p ' each where $5 x=375-3 \mathrm{p}$. The cost of
production is ₹ $\left[500+13 x+\frac{x^{2}}{5}\right]$. Find how many sitars should be manufactured for maximum profit and what is the Profit?
6. (i) Prove that :

$$
\left|\begin{array}{lll}
1 & x & x^{3} \\
1 & y & x^{3} \\
1 & z & x^{3}
\end{array}\right|=(x-y)(y-z)(z-x)(x+y+z)
$$

(ii) Express the following matrix as sum of a Symmetric and Skew-symmetric matrix :

$$
\left[\begin{array}{lll}
1 & 2 & 4 \\
6 & 8 & 1 \\
3 & 5 & 7
\end{array}\right] .
$$

7. (i) The sum of three numbers is 6 . If we multiply the third number by 2 and add the first number to the result, we get 7 . By adding second and third numbers to three times the first number, we get 12. Use determinants to find the number. $71 / 2$
(ii) Solve the following system of equations : $7^{1 / 2}$

$$
\begin{aligned}
& 2 x+8 y+5 z=5 \\
& x+y+z=-2 \\
& x+2 y-z=2 .
\end{aligned}
$$

8. (i) Find the nominal rate of interest when interest is payable half yearly which is equivalent to the effective rate of 6.14% per annum. $71 / 2$
(ii) Find the Compound interest on ₹ 6,950 for 3 years if interest is Payable half yearly, the rate of interest for the first two years being 6% p.a. and for the third year 9% p.a. $71 / 2$
9. (i) A Colour television worth ₹ 10,000 is Purchased on instalment plan under which 10 equal instalments including interest at 10% per annum are payable. Find the amount of Annual instalment.
(ii) A man borrows ₹ 6,000 at the rate of interest 6% p.a. compounded continuously and promises to pay off the loan in 20 annual instalments. Find the amount of each Annual instalment.
