Roll No. Total Pages: 05

BCA/D-20

1201

COMPUTER ORIENTED NUMERICAL METHODS

Paper: BCA-236

Time : Three Hours] [Maximum Marks : 80

Note: Attempt *Five* questions in all, selecting *one* question from each Unit. Q. No. 1 is compulsory. All questions carry equal marks.

(Compulsory Question)

- 1. (a) An approximate value of π is given 3.14278152 and its true value is 3.14159265. Find absolute, relative and percentage errors in the value of π . 3
 - (b) Deduce the order of convergence of Newton Raphson method.
 - (c) Establish a relationship between Δ (forward difference operator) and ∇ (backward difference operator).
 - (d) Find the suitable initial approximate value of real roots of equation $x^3 9x + 1$?

(5)L- 1

(e) Illustrate ill conditions in equation with one example.

3

(f) Construct the divided difference table for the data (0, 1), (1, 4) (3, 40) and (4, 85). 2

Unit I

- 2. (a) Using Newton-Raphson method, find a real root of equation f (x) = 3x² 2x + 1 = 0 by choosing initial approx. upto 3 iterations.
 - (b) Explain normalized representation of floating pointnumbers and discuss advantages and limitation of narmalised representation.8
- **3.** (a) Using Barvstow's method to find a quadratic factor of polynomial:

$$x^5 + 2x^4 - 4x^3 + 5x^2 + 5x + 4 = 0$$
upto 2 Iterations.

(b) Develop method to find the value of \sqrt{N} , where N

(5)L-1201

8

Unit II

4. (a) Solve the system of equations :

$$6x_1 - 2x_2 + x_3 = 11$$
$$-2x_1 + 7x_2 + 2x_3 = 5$$
$$x_1 + 2x_2 - 5x_3 = -1$$

starting with initial vector [0, 0, 0] using Gauss Seidel method up to 2 Iterations.

- (b) Given $\frac{dy}{dx} = xy + y^2$ and y(0) = 1, y(0.1) = 1.1169, y(0.2) = 1.2773 and y(0.3) = .2267. Evaluate y(0.4) by predictor corrector method?
- **5.** (a) Using Gauss Elimination method, solve the system of equations i.e. :

$$28x + 4y - z = 32$$

 $x + 3y + 10z = 24$
 $2x + 17y + 4z = 35$.

(b) Find y(0.1), y(0.2) and y(0.3) from $\frac{dy}{dx} = x + y^2$;

y(0) = 1 by using Runge Kutta method of 4th order and find y(0.4).

Unit III

6. (a) Using Lagrange's interpolation formula, find the interpolated value of f(x) for x = 3 for table :

x : 3.2 2.7 1.0 4.8

f(x): 22.0 17.8 14.2 38.2 **8**

(b) The table gives the distance in nautical miles of visible horizon for height in feet above the earth surface as:

Height (x): 100 150 200 250 300 350 400 Distance (y): 10.63 13.03 15.04 16.81 18.42 19.9 21.27 Find the value of y when x = 218 feet using Newton Gregory forward interpolation formula.

7. (a) Given $\frac{dy}{dx} = x + y^2$; y(0) = 1 using Taylor's series method to find value of y(0.1), y(0.2) and y(0.3).

8

(b) Define Chebyshev's polynomials and their orthogonal properties. Write one application of Chebyshev's polynomial.8

Unit IV

8. (a) Given that :

x: 1.0 1.1 1.2 1.3 1.4 1.5 1.6 y: 7.989 8.403 8.781 9.129 9.450 9.750 10.310 Find $\frac{dy}{dx}$ at x = 1.1.

- (b) Using Trapezoide's rule, calculate $\int_{0}^{1} x^{2} dx$ by taking h = 0.2.
- 9. (a) Apply Gaussian Quadrature formula to evaluate $\int_0^2 x^{-2} dx$.
 - (b) Using Simpson's $\frac{1}{3}$ rd rule evaluate $\int_0^1 (1+x)^3 dx$ using n = 6 strips.