Total Pages: 4

GSM/D-20

922

INORGANIC CHEMISTRY

Paper - VIII - CH-201

Time allowed: 3 Hours Maximum Marks: 32

Note: Attempt five questions in all, selecting two questions from each unit. Question No. 1 is compulsory.

Compulsory Questions

- 1. (i) Out of Cu₂Cl₂ and CuCl₂ which is more stable and why?
 - (ii) Give the number of unpaired electrons in Cr^{+3} and Co^{+2} .
 - (iii) Write IUPAC name of Na[Co(CN)₄].
 - (iv) What is the oxidation state of cobalt in $[Co(NH_3)_3 (H_2O)_2Cl]^{+2}$.
 - (v) Give the example of amphiprotic solvent.
 - (vi) Which out of NH₃ or H₂O undergoes more autoionization?
 - (vii) What EAN rule?
 - (viii) Draw the structure of [Co(EDTA)]. 1×8

922/K/57 P.T.O.

UNIT-I

2.	(a)	Iron is a transition element but sodium is
		not. Explain. 2
	(b)	4s-Subshell is filled prior to 3d but on
		ionisation, 4s-electrons are removed first.
		Explain. 2
	(c)	Cu ⁺² ions are coloured and paramagnetic
		while $\mathbf{Z}\mathbf{n}^{^{+2}}$ ions are colourless and
		diamagnetic Explain why? 2
3.	(a)	Calculate in Bohr magneton the expected
		spin magnetic moment for the following ions:
		(i) Fe ⁺³ (ii) Ni ⁺² 2
	(b)	Why do transition elements in zero and
		lower oxidation state form complexes with
		weak ligands like CO, NO or PR_3 ? 2
	(c)	Write the stereochemistry of following
		complexes: 2
		(i) $[Ag(CN)_2]$ (ii) $Ni(CO)_4$ 2
4.	(a)	Consider the Latimer diagram for Tl ⁺ . 3
		$Tl^{+3} \xrightarrow{+1.26} Tl^{+} \xrightarrow{-0.34} Tl$
		+0.73

(i) Construct a frost diagram.

(ii) Predict the stability or unstability of Tl⁺.

	(b)	Write the names and symbols of members	of
		second and third transition series belongi	ng
		to Fe, Co and Ni groups.	3
5.	(a)	Draw polymeric structure of $CuCl_2$.	2
	(b)	Which should be a better Oxidising agent	t :
		Co ⁺² or Co ⁺³ in water. Explain why?	3
	(c)	Name a transition metal which is liquid	at
		room temperature. Give reason.	3
		UNIT-II	
6.		te IUPAC names of the following:	3
	(i)	$[(NH_3)_4 Co \underbrace{NH_2}_{NO_2} Co(NH_3)_4](NO_3)_4$	
	(ii)	$K_2[Fe(CN)_5NO]$	
	(iii)	$[\operatorname{Cr}(\operatorname{NH}_3)_6]$ $[\operatorname{Co}(\operatorname{CN})_6]$	
	(b)	What is oxidation state and coordination	on
		number of the metal ion and the geometric	al
		arrangement of ligands in the complex	
		$K_4[Ni(CN)_4].$	3
7.	(a)	What are chelates? Discuss the factor	rs
		which affect the stability of chelates.	2
	(b)	Write:	2
		(i) Linkage isomer of $[Cu(NH_3)_5ONO]Cl_2$	
		(ii) Coordination isomer of [Cu(NH ₃) ₄] [PtCl ₂	4].

- (c) Calculate EAN of central atom in : 2 Fe(CO)₅ and [Cr(NH₃)₆]⁺³.
- 8. (a) How do the following solutes behave in liq SO2 (as an acid or a base)? 2
 - (i) $SO(SCN)_2$ (ii) $CaSO_3$
 - (b) Discuss self ionisation of liq. SO₂ as non-aqueous solvent. What are the most effective acids and bases of this solvent system. Give reactions.
 - (c) $HgI_2 + KI \xrightarrow{\text{liquid } SO_2}$?
- 9. (a) Explain why: 2×2
 - (i) Acitamide behaves as a weak base in aqueous solution but shows acidic properties in liquid NH_3 .
 - (ii) Na metal solution in liquid NH₃ is blue in colour, paramagnetic and highly reducing in nature.
 - (b) Complete the following reactions in liquid NH_3 2
 - (i) $SO_2 Cl_2 + 4NH_3 \longrightarrow$
 - (ii) BCl₃ -----