ADVANCED CALCULUS

Paper - BM-231

Time allowed : 3 Hours Maximum Marks : 27

Note: Attempt five questions in all, selecting at least one question from each unit. Question No. 1 is compulsory. All questions carry equal marks.

Compulsory Question

1. (i) State the Darboux theorem. 1
(ii) State Schwarz's theorem. 1
(iii) Define principal normal and binormal. ½
(iv) Define screw-curvature. What is its magnitude. $1 / 2$

UNIT-I

2. (i) Show that every uniformly continuous function on closed and bounded interval is continuous. Is converse true ? Justify your answer.
(ii) Examine the applicability of Rolle's theorem for the function $f(x)=(x-1)^{2 / 5}$ on $[0,3]$. 3
3. (i) Show that the function
$f(x)=\left\{\begin{array}{ccc}x \cos \frac{1}{x} & ; & x \neq 0 \\ 0 & ; & x=0\end{array}\right.$
is continuous for every real x.
(ii) Find the values of a and b so that
$\lim _{x \rightarrow 0} \frac{x(1+a \cos x)-b \sin x}{x^{3}}$
may be equal to 1 .

UNIT-II

4. (i) Show that $f(x, y)=\sqrt{|\mathrm{xy}|}$ is continuous at [0, 0].
(ii) State and prove Euler's theorem on homogenous function.
5. (i) Let $f: \mathrm{R}^{2} \rightarrow \mathrm{R}$ be defined as:
$f(x, y)=\left\{\begin{array}{ccl}\frac{x y}{x^{2}+y^{2}} & ; & (x, y) \neq(0,0) \\ 0 & ; & (x, y)=(0,0)\end{array}\right.$
Show that $\lim f(x, y)$ does not exist.

$$
(x, y) \rightarrow(0,0)
$$

(ii) If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the angles of a triangle such that $\sin ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~B}+\sin ^{2} \mathrm{C}=$ constant.

Prove that $\frac{\partial A}{\partial B}=\frac{\tan C-\tan B}{\tan A-\tan C}$.

UNIT-III

6. (i) Show by an example that second order partial derivative of a function may exist at point but the function is not continuous thereat.
(ii) In a plane triangle ABC , find the maximum value of $\cos \mathrm{A} \cos \mathrm{B} \cos \mathrm{C}$.
7. (i) Show that the function:
$f(x, y)=\left\{\begin{array}{ccc}\frac{x^{2} y^{2}}{x^{4}+y^{4}} & ; \quad(x, y) \neq(0,0) \\ 0 & ; & (x, y)=(0,0)\end{array}\right.$
is not differentiable at the origin.
3
(ii) Find the maximum and minimum distance of the point $(3,4,12)$ from the sphere $x^{2}+y^{2}+z^{2}=1$.

UNIT-IV

8. (i) Show that the curve
$\vec{r}=\left(t, \frac{1+t}{t}, \frac{1-t^{2}}{t}\right)$
lies on a plane.
(ii) Find the radius of curvature for the curve: 3
$\vec{r}=3 a \cos 2 \theta \hat{i}+4 c \sin ^{3} \theta \hat{j}+4 c \cos ^{3} \theta \hat{k}$ at $\theta=\frac{\pi}{4}$.
9. (i) Show that the radius of spherical curvature of a circular helix
$x=\mathrm{a} \cos \theta, y=\mathrm{a} \sin \theta, z=\mathrm{a} \theta \cot \alpha$ is equal to the radius of circular curvature. 3
(ii) Find the evolutes of circular helix $x=\mathrm{a} \cos u$, $y=\mathrm{a} \sin u, z=a u \tan \alpha$. 3
