Roll No.

ADVANCED CALCULUS

GSM/D-20

Paper - BM-231

Time allowed : 3 Hours Maximum Marks : 27

Note: Attempt **five** questions in all, selecting at least one question from each unit. Question No. 1 is compulsory. All questions carry equal marks.

Compulsory Question

UNIT-I						
magnitude.						$\frac{1}{2}$
	(iv)	Define	screw-curvature.	What	is	its
	(iii)	ii) Define principal normal and binormal.				$\frac{1}{2}$
	(ii)	State Schwarz's theorem.				1
1.	(i)	State the Darboux theorem.				1

- 2. (i) Show that every uniformly continuous function on closed and bounded interval is continuous. Is converse true ? Justify your answer.
 3
 - (ii) Examine the applicability of Rolle's theorem for the function $f(x) = (x - 1)^{2/5}$ on [0, 3]. 3

Total Pages: 4

P.T.O.

3. (i) Show that the function

$$f(x) = \begin{cases} x \cos \frac{1}{x} & ; \quad x \neq 0 \\ 0 & ; \quad x = 0 \end{cases}$$

is continuous for every real *x*.

(ii) Find the values of a and b so that

$$\lim_{x \to 0} \frac{x(1 + a\cos x) - b\sin x}{x^3}$$

may be equal to 1.

UNIT-II

- 4. (i) Show that $f(x, y) = \sqrt{|xy|}$ is continuous at [0, 0]. 3
 - (ii) State and prove Euler's theorem on homogenous function.

5. (i) Let
$$f : \mathbb{R}^2 \to \mathbb{R}$$
 be defined as :

$$f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2} & ; \quad (x, y) \neq (0, 0) \\ 0 & ; \quad (x, y) = (0, 0) \end{cases}$$

Show that $\lim_{(x, y) \to (0, 0)} f(x, y)$ does not exist. 3

(ii) If A, B, C are the angles of a triangle such that $\sin^2 A + \sin^2 B + \sin^2 C = \text{constant}$.

Prove that
$$\frac{\partial A}{\partial B} = \frac{\tan C - \tan B}{\tan A - \tan C}$$
. 3

891/K/38

3

3

UNIT-III

- 6. (i) Show by an example that second order partial derivative of a function may exist at point but the function is not continuous thereat.
 - (ii) In a plane triangle ABC, find the maximum value of cosA cosB cosC.
- 7. (i) Show that the function :

$$f(x, y) = \begin{cases} \frac{x^2 y^2}{x^4 + y^4} & ; \quad (x, y) \neq (0, 0) \\ 0 & ; \quad (x, y) = (0, 0) \end{cases}$$

is not differentiable at the origin.

3

(ii) Find the maximum and minimum distance of the point (3, 4, 12) from the sphere x² + y² + z² = 1.

UNIT-IV

- 8. (i) Show that the curve $\vec{r} = \left(t, \frac{1+t}{t}, \frac{1-t^2}{t}\right)$ lies on a plane. 3
 - (ii) Find the radius of curvature for the curve: 3

$$\vec{r} = 3a\cos 2\theta \,\hat{i} + 4c\sin^3\theta \,\hat{j} + 4c\cos^3\theta \,\hat{k}\,\operatorname{at}\theta = \frac{\pi}{4}.$$

891/K/38

9. (i) Show that the radius of spherical curvature of a circular helix
x = a cosθ, y = a sinθ, z = a θ cotα
is equal to the radius of circular curvature. 3

(ii) Find the evolutes of circular helix $x = a \cos u$,

 $y = a \sin u, z = a u \tan \alpha.$ 3