Roll No.

Total Pages : 4

GSQ/M-21

1752

PHYSICAL CHEMISTRY (Theory)

Paper-XIX (CH-305)

Time Allowed : 3 Hours] [Maximum Marks : 32

Note : Attempt five questions in all, selecting at least two questions from each Unit. Question No. 1 is compulsory.

Compulsory Question

1759/IZ/79 DTO				
	(g)	What are Isotonic solutions ?		1
		volatile solute.		1
	(f)	Define Raoult's law for solutions containing non-		
	(e)	Define the term 'Phase'.		1
	(d)	State 'Gibb's phase rule'.		1
		called ?		2
	(c)	What is Partition function ? Why i	s it	S0
	(b)	What is Phosphorescence ?		1
1.	(a)	Define First law of Photochemistry.		1

UNIT-I

- 2. (a) Give one example of a Photochemical reaction in which the quantum yield is very high. Briefly explain the reason for the same.
 3
 - (b) For the Photochemical reaction $A \rightarrow B$, 1.0×10^{-5} moles of B are formed on absorption of 6.0×10^7 ergs at 3600Å. Calculate the quantum efficiency of the reaction. 3
- 3. (a) What are Photochemical reactions ? How these reactions differ from Thermochemical reactions ? 3
 - (b) Calculate the value of an Einstein of energy for radiation of wavelength 4000 Å.
 - (c) What is 'Resonance fluorescence' ? Give one example.
- 4. (a) What is Photosensitizer ? How does it act ? Explain by giving two suitable examples.3
 - (b) What is Statistical mechanics ? What are the main points of difference between Classical Statistical mechanics and Quantum Statistical mechanics ?

1752/K/72

- 5. (a) Discuss the following :
 - (i) Thermodynamic probability.
 - (ii) Born-Oppenheimer approximation. 4
 - (b) Write expression for Maxwell-Boltzmann distribution law taking degeneracy of states into consideration. What do different symbols signify?

UNIT-II

- 6. (a) Give two examples each of two component systems in which :
 - (i) the components do not react with each other.
 - (ii) the component react to form a compound with congruent melting point
 - (iii) the component react to form a compound with incongruent melting point.
 - (b) What is meant by Triple point of Water ? Why is it different from the normal melting point of Ice ?2
 - (c) What is Condensed system ? 1
- 7. (a) Calculate the number of components and degrees of freedom for the following systems :

(i) $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$

1752/K/72

- (ii) $C(s) + O_2(g) \rightleftharpoons CO(g) + CO_2(g)$
- (iii) Rhombic sulphur \rightleftharpoons Monoclinic sulphur

(iv)
$$NH_4Cl(s) \rightleftharpoons NH_3(g) + HCl(g)$$
. 4

- (b) Draw a labelled phase diagram for lead-silver system.
- 8. (a) What are ideal and non-ideal solutions? Give one example of each of them. 2
 - (b) Define the term Colligative properties. How can you justify that Osmotic pressure is a colligative property ?
 - (c) 1.20 g of a substance dissolved in 100 g of water lowered its freezing point by 0.37 °C. Calculate the molecular weight of the substance. Molal depression constant of water is 1.86 °C per molality.
- 9. (a) Define Molal elevation constant. Derive the relationship between elevation in boiling point and molality of the dissolved solute.
 - (b) Differentiate between Molarity and Molality of a solution. Which out of these is the preferred method of expressing Concentration and why?

1752/K/72