Roll No.

Total Pages: 4

GSE/M-21

1482

CHEMISTRY (Physical Chemistry) (Theory) Paper–V (CH-105)

Time : Three Hours]

[Maximum Marks : 32

Note : Attempt *five* questions in all, selecting at least *two* questions from each Section. Question No. 1 is compulsory. Use of Log-table and Non-programming calculator is allowed.

Compulsory Question

1.	(a)					
		of reaction?	1			
	(b)	Give an example of Zero order reaction.	1			
	(c)	Write units of rate constant for Second order react				
			1			
	(d)	Write general expression for half-life period of a reaction				
		of nth order.	1			
	(e)	State Ostwald' dilution law.	1			
	(f)	What do you mean by pH of a solution?	1			
	(g)	Write Debye-Huckel-Onsager equation in compl	ete			
		form. What do different symbols signify?	2			
1482//KD/169 [P.T.C						

SECTION-A

- 2. (a) What do you mean by second order reactions? Show that for these reactions, the half-life period is inversely proportional to the initial concentration. $2\frac{1}{2}$
 - (b) The slope of the Arrhenius plot of log k against 1/T for a certain reaction is found to be -7610 K. Calculate the activation energy of the reaction.
 - (c) What is temperature coefficient of a reaction? Why the rate of reaction is doubled for every 10° C rise of temperature? $1\frac{1}{2}$
- 3. (a) Explain the simple collision theory for unimolecular reactions. 3
 - (b) For the reaction $A \rightarrow B + C$, the following data were obtained :

Time in seconds	:	0	900	1800
Concentration of A in moles/litr	e:	50.6	19.7	7.82
Find the order of the reaction.				2

- (c) How is the rate constant of an ionic reaction related to the dielectric constant of the solvent? 1
- 4. (a) Using 'Transition state theory', derive an expression for the rate constant in terms of the free energy of activation for a reaction. What is the significance of the equation obtained?
 - (b) How does catalyst increase the speed of a reaction? What is its effect on equilibrium constant of the reversible reaction? 2

1482//KD/169

- (c) What type of plot will be obtained for a zero order reaction for :
 - (i) Concentration versus time.
 - (ii) Rate of reaction versus concentration? 1
- (a) For a third order reaction of the type 3A→Products, derive an expression for the rate constant.
 3
 - (b) Give *two* characteristics of first order reaction. 2
 - (c) Define 'Half-life-period' of a reaction. 1

SECTION-B

- 6. (a) What support do colligative properties of strong electrolytes offer in favour of Arrhenius theory of electrolytic dissociation?
 - (b) Define specific conductance, equivalent conductance and molar conductance. What are their units? 3
 - (c) In a conductometric titration, the solution to be added from burette should be much stronger than the solution taken in conductivity cell. Why? 1
- 7. (a) What is buffer solution? Explain buffer action with a suitable example for basic buffer.3
 - (b) At 18°C, the saturated aqueous solution of BaSO₄ was found to have specific conductivity of 3.648×10^{-6} ohm⁻¹ cm⁻¹, that of water being 1.250×10^{-6} ohm⁻¹ cm⁻¹. Ionic conductance of Ba²⁺ and SO₄²⁻ ions are 55 and 68.3 ohm⁻¹ cm² equiv⁻¹ respectively. Determine the solubility of BaSO₄ in water (Atomic weight of Ba = 137).

1482//KD/169

[P.T.O.

- 8. (a) How does Kohlrausch' law help in the calculation of equivalent conductance of weak electrolyte at infinite dilution? Explain by giving suitable example. 2
 - (b) What is the basic principle of conductometric titration? Discuss the titration curve obtained in the conductometric titration of AgNO₃ solution with KCl solution.
 - (c) What is the effect of dilution on specific and equivalent conductance? 1
- **9.** (a) Derive Henderson-Hasselbalch equation for the calculation of pH of an acidic buffer mixture. 2
 - (b) At 293 K, the equivalent conductance at infinite dilution of HCl, CH_3COONa and NaCl solution are 383.5, 78.4 and 102.0 ohm⁻¹cm² equiv⁻¹ respectively. If the equivalent conductance of CH_3COOH at some other dilution is 100.0 ohm⁻¹cm² equiv⁻¹ at 293 K, calculate the degree of dissociation of acetic acid at that dilution.
 - (c) What are the limitations of Arrhenius theory of Ionization? 2

1482//KD/169

4