GSE/J-21

NUMBER THEORY AND TRIGONOMETRY

Paper-BM-121

Time : Three Hours]
[Maximum Marks : 27

Note : Attempt five questions in all, selecting one question from each section. Question No. 1 is compulsory.

Compulsory Question

1. (a) If a is odd, show that $a^{2} \equiv 1(\bmod 8)$. 1
(b) Evaluate $\mu(270)$. 1
(c) Prove that $i^{i}=e^{-(4 n+1) \frac{\pi}{2}}$.
(d) Solve the equation : $\tan ^{-1} 2 x+\tan ^{-1} 3 x=\frac{\pi}{4}$.
(e) If $z=x+i y$, show that $\sin ^{2} z+\cos ^{2} z=1$.

SECTION-I

2. (a) Prove that the number of primes is infinite.
(b) Find the remainder obtained on dividing 3^{181} by 17.
3. (a) Show that $x^{12}-y^{12}$ is divisible by 91 , if x and y are coprime to 91 .
(b) If $(p-1)!+1 \equiv 0(\bmod p)$, then show that p is a prime number.

SECTION-II

4. (a) Find all integers that satisfy the congruences $x \equiv 1(\bmod 4), x \equiv 0(\bmod 3), x \equiv 5(\bmod 7)$ simultaneously.
(b) Show that $\phi\left(12^{k}\right)=12^{k-1} \phi(12)$, where k is a positive integer.
$2^{1 / 2}$
5. (a) Find all n such that $d(n)=10$. Hence find the least such value of n.
(b) Evaluate $\left(-\frac{168}{11}\right)$.

SECTION-III

6. (a) Show that the roots of the equation $(x-1)^{4}+x^{4}=0$ are given by $x=\frac{1}{2}\left[1+i \cot \frac{2 r+1}{8} \pi\right], r=0,1,2,3$.
(b) Prove that the four roots of the equation

$$
\begin{equation*}
16 x^{4}-20 x^{2}+5=0 \text { are } \pm \sin \frac{\pi}{5} \text { and } \pm \sin \frac{2 \pi}{5} \tag{1/2}
\end{equation*}
$$

7. (a) If $\tan (\theta+i \phi)=\sin (x+i y)$, prove that $\operatorname{coth} y$. $\sin h 2 \phi=\cot x \cdot \sin 2 \theta$.
(b) If $\tan (\theta+i \phi)=\tan \alpha+i \sec \alpha$, show that

$$
\begin{equation*}
2 \theta=n \pi+\frac{\pi}{2}=\alpha, e^{2 \phi}= \pm\left(\cot \frac{\alpha}{2}\right) \tag{1/2}
\end{equation*}
$$

SECTION-IV

8. (a) If the principal values are considered, prove that

$$
\begin{equation*}
\frac{(1+i)^{1-i}}{(1-i)^{1+i}}=\sin (\log 2)+i \cos (\log 2) \tag{3}
\end{equation*}
$$

(b) Solve the equation : $\cos ^{-1} x+\sin ^{-1} \frac{1}{\sqrt{5}}=\frac{\pi}{4}$.
9. (a) Separate $\tan h^{-1}(x+i y)$ into real and imaginary parts.
(b) Find the sum of the series :

$$
\sin \alpha+\frac{1}{2} \sin 2 \alpha+\left(\frac{1}{2}\right)^{2} \sin 3 \alpha+\ldots \ldots . \text { to } \infty
$$

