Roll No.

Total Pages : 3

1448

GSE/J-21

NUMBER THEORY AND TRIGONOMETRY Paper–BM-121

Time : Three Hours]

[Maximum Marks : 27

Note : Attempt *five* questions in all, selecting *one* question from each section. Question No. 1 is compulsory.

Compulsory Question

- 1. (a) If a is odd, show that $a^2 \equiv 1 \pmod{8}$. 1
 - (b) Evaluate $\mu(270)$. 1

(c) Prove that
$$i^{i} = e^{-(4n+1)\frac{\pi}{2}}$$
. 1

(d) Solve the equation : $\tan^{-1} 2x + \tan^{-1} 3x = \frac{\pi}{4}$.

(e) If
$$z = x + iy$$
, show that $\sin^2 z + \cos^2 z = 1$.

SECTION-I

2.	(a)	Prove that the number of primes is infinite.		3
	(b)	Find the remainder obtained on dividing 3 ¹⁸¹	by 1	7.
				21⁄2
1448//KD/149			[P.'	Г.О.

- 3. (a) Show that $x^{12} y^{12}$ is divisible by 91, if x and y are coprime to 91. 3
 - (b) If $(p-1)! + 1 \equiv 0 \pmod{p}$, then show that p is a prime number. $2\frac{1}{2}$

SECTION-II

- 4. (a) Find all integers that satisfy the congruences $x \equiv 1 \pmod{4}, x \equiv 0 \pmod{3}, x \equiv 5 \pmod{7}$ simultaneously.
 - (b) Show that $\phi(12^k) = 12^{k-1} \phi(12)$, where k is a positive integer. $2^{1/2}$
- 5. (a) Find all *n* such that d(n) = 10. Hence find the least such value of *n*. 3

(b) Evaluate
$$\left(-\frac{168}{11}\right)$$
. $2\frac{1}{2}$

SECTION-III

6. (a) Show that the roots of the equation $(x - 1)^4 + x^4 = 0$ are given by $x = \frac{1}{2} \left[1 + i \cot \frac{2r + 1}{8} \pi \right], r = 0, 1, 2, 3.$

(b) Prove that the four roots of the equation $16x^4 - 20x^2 + 5 = 0$ are $\pm \sin \frac{\pi}{5}$ and $\pm \sin \frac{2\pi}{5}$. $2\frac{1}{2}$

1448//KD/149

2

- 7. (a) If $\tan (\theta + i\phi) = \sin(x + iy)$, prove that $\coth y$. $\sinh 2\phi = \cot x \cdot \sin 2\theta$.
 - (b) If $\tan (\theta + i\phi) = \tan \alpha + i \sec \alpha$, show that

$$2\theta = n\pi + \frac{\pi}{2} = \alpha, \ e^{2\phi} = \pm \left(\cot\frac{\alpha}{2}\right). \qquad 2\frac{1}{2}$$

SECTION-IV

8. (a) If the principal values are considered, prove that $\frac{(1+i)^{1-i}}{(1-i)^{1+i}} = \sin(\log 2) + i\cos(\log 2).$ 3

(b) Solve the equation :
$$\cos^{-1} x + \sin^{-1} \frac{1}{\sqrt{5}} = \frac{\pi}{4}$$
. $2\frac{1}{2}$

- 9. (a) Separate $tanh^{-1}(x + iy)$ into real and imaginary parts. 3
 - (b) Find the sum of the series :

$$\sin \alpha + \frac{1}{2} \sin 2\alpha + \left(\frac{1}{2}\right)^2 \sin 3\alpha + \dots \text{ to } \infty. \qquad 2\frac{1}{2}$$

1448//KD/149