GSQ/M-21

SOLID STATE AND NANO PHYSICS

Paper-XI

Time Allowed : 3 Hours]

Note : Attempt five questions in all, selecting one question from each Unit. Question No. 1 is compulsory. Use of Scientific (Non-Programmable) calculator is allowed.

Compulsory Question

1.	(a)	Which type of lattice does diamond has? How many atoms are in a	
		primitive cell and conventional cube of diamond ? 2	
	(b)	A two dimensional lattice has the basis vector $\vec{a} = 2\hat{x}$, $\vec{b} = \hat{x} + 2\hat{y}$. Find	
		the reciprocal lattice vectors. 2	
	(c)	Discuss the concept of flux quantization. 2	
	(d)	What is single wall carbon nanotube? 2	
UNIT–I			
•			

- 2. (a) What do you mean by Miller indices? How do the Miller indices of a plane are determined? What are the important features of Miller indices?6
 - (b) Discuss in brief the Crystal structure of Zinc sulphide. 2
- 3. (a) Explain the concepts of Atomic radius and Atomic packing fraction.
 Calculate the values of atomic radius and atomic packing fraction for :
 - (i) simple cube
 - (ii) body centered cube
 - (iii) face centered cube structure.
 - (b) A substance with fcc lattice has molecular weight 60.2 and density 6250 kg/m³. Calculate lattice constant α . 2

1748

Total Pages : 2

[Maximum Marks : 40

UNIT-II

4.	(a)	Derive Laue's equations of diffraction for X-rays. Show that theselead to Bragg's law for X-ray diffraction.5		
	(b)	Discuss the rotating crystal method for X-ray diffraction. 3		
5.	(a)	Discuss the concept of Reciprocal lattice. Show that the fcc lattice is reciprocal of the bcc lattice and vice versa. 5		
	(b)	Derive expression for Brillouin zone for fcc lattice. 3		
UNIT–III				
6.	(a)	Explain the concept of Perfect diamagnetism. Prove that the coherence length is reduced due to the presence of impurities in a Superconductor. 5		
	(b)	The critical temperature for Mercury with isotopic mass 199.5 is 4.185 Kelvin. Calculate its critical temperature when its isotopic mass changes to 203.4.		
7.	(a)	Discuss BCS theory of Superconductor. How does it account for the superconducting state? 5		
	(b)	Describe the applications and limitations of Superconductors. 3		
UNIT-IV				
8.	(a)	Explain the Molecular assembler concept. 4		
	(b)	Explain the construction and working of Transmission electron Microscope. 4		
9.	(a)	Explain the Carbon fullerene. Describe the synthesis and purification of fullerenes.		
	(b)	Explain the vision and the objectives of Nanotechnology. 4		