GSE/M-21

1450

MATHEMATICS
 (Vector Calculus)
 Paper-BM-123

Time : Three Hours]
[Maximum Marks : 27
Note : Attempt five questions in all, selecting one question from each section. Question No. 1 is compulsory.

Compulsory Question

1. (a) Find the volume of parallelopiped whose edges are represented by $\vec{a}=2 \hat{i}-3 \hat{j}+4 \hat{k}, \quad \vec{b}=\hat{i}+2 \hat{j}-\hat{k}$ $\vec{c}=3 \hat{i}-\hat{j}+2 \hat{k}$.

1
(b) Interpret the symbol $\vec{a} \cdot \nabla$.
(c) Evaluate $\frac{d}{d t}\left[\vec{r} \frac{d \vec{r}}{d t} \frac{d^{2} \vec{r}}{d t^{2}}\right]$.
(d) Show that $\iint_{S} \hat{n} d s=0$ for any closed surface S . 1
(e) Find the unit tangent vector at $t=2$ on the curve $x=t^{2}-1, y=4 t-3, \mathrm{Z}=2 t^{2}-6 t$. 1

SECTION-I

2. (a) Show that $\vec{a} \times(\vec{b} \times \vec{c}), \vec{b} \times(\vec{c} \times \vec{a}), \vec{c} \times(\vec{a} \times \vec{b})$ are coplanar.
(b) If \vec{a}, \vec{b} and \vec{c} are perpendicular to each other, then prove $[\vec{a}, \vec{b}, \vec{c}]=a^{2} b^{2} c^{2}$.
3. (a) If $\vec{a}, \vec{b}, \vec{c}$ be three unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{1}{2} \vec{b}$, find the angles which \vec{a} makes with \vec{b} and \vec{c} where \vec{b} and \vec{c} non-parallel.
(b) Evaluate $\frac{d}{d t}\left[\vec{r} \times\left\{\frac{d \vec{r}}{d t} \times \frac{d^{2} \vec{r}}{d t^{2}}\right\}\right]$.

SECTION-II

4. (a) Find the directional derivatives of

$$
f(x, y, z)=x y+y z+z x
$$

in the direction of the vector $2 \hat{i}+3 \hat{j}+3 \hat{k}$ at the point $(3,1,2)$.
(b) If $d=x^{2} y^{3} z^{4}$, then find div $(\operatorname{grad} \phi)$ i.e., $\nabla \cdot(\nabla \phi) \cdot 2^{1 ⁄ 2} 2$
5. (a) Show that the function $\frac{1}{r}$,
where $r=|\vec{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$
is harmonic function provided $r \neq 0$.
(b) Evaluate $\nabla \cdot(\vec{r} \times \vec{a})$, where \vec{a} is a constant vector and

$$
\begin{equation*}
\vec{r}=x \hat{i}+y \hat{j}+z \hat{k} . \tag{2}
\end{equation*}
$$

SECTION-III

6. (a) Let $u=x y, v=\frac{x^{2}+y^{2}}{2}, w=z$. Show that u, v, w are not orthogonal. 2
(b) If δ, ϕ, z are cylindrical coordinates show that $\nabla \phi$ and $\nabla \log \delta$ are solenoidal. $2^{1 / 2}$
7. (a) If (r, θ, ϕ) are spherical coordinates show that $\nabla \phi=\nabla \times(r \cos \theta \nabla \theta)$. 2
(b) Find the volume element $d v$ in
(i) cylindrical.
(ii) spherical polar coordinates.

SECTION-IV

8. (a) Evaluate $\iint_{\mathrm{S}} \vec{f} \cdot \hat{n} d s$, where $\vec{f}=12 x^{2} y \hat{i}-3 y z \hat{j}+2 z \hat{k}$ and S is the surface of the plane $x+y+z=1$ included in the first octant. $2^{1 / 2}$
(b) Find the work done in moving a particle in a force field $\vec{f}=3 x^{2} \hat{i}+(2 x z-y) \hat{j}+z \hat{k}$ along the line joining the point $(0,0,0)$ and $(2,1,3)$. 2
9. (a) State and prove Stokes theorem.
(b) Evaluate by Green's theorem

$$
\oint_{\mathrm{C}}\left(x^{2}-\cosh y\right) d x+(y+\sin x) d y
$$

where C is the rectangle with vertices

$$
(0,0),(4,0),(4,1),(0,1) . \quad 2^{1 ⁄ 2}
$$

