Roll No.

Total Pages : 4

GSE/M-21

1450

MATHEMATICS (Vector Calculus) Paper–BM-123

Time : Three Hours]

[Maximum Marks : 27

Note : Attempt *five* questions in all, selecting *one* question from each section. Question No. 1 is compulsory.

Compulsory Question

- 1. (a) Find the volume of parallelopiped whose edges are represented by $\vec{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} - \hat{k}$ $\vec{c} = 3\hat{i} - \hat{j} + 2\hat{k}$.
 - (b) Interpret the symbol $\vec{a} \cdot \nabla$. 1

(c) Evaluate
$$\frac{d}{dt} \left[\vec{r} \frac{d\vec{r}}{dt} \frac{d^2\vec{r}}{dt^2} \right]$$
. 1

- (d) Show that $\iint_{S} \hat{n} \, ds = 0$ for any closed surface S. 1
- (e) Find the unit tangent vector at t = 2 on the curve $x = t^2 1$, y = 4t 3, $Z = 2t^2 6t$.

1450//KD/1113

[P.T.O.

SECTION-I

- 2. (a) Show that $\vec{a} \times (\vec{b} \times \vec{c})$, $\vec{b} \times (\vec{c} \times \vec{a})$, $\vec{c} \times (\vec{a} \times \vec{b})$ are coplanar.
 - (b) If \vec{a} , \vec{b} and \vec{c} are perpendicular to each other, then prove $[\vec{a}, \vec{b}, \vec{c}] = a^2 b^2 c^2$. $2\frac{1}{2}$
- 3. (a) If \vec{a} , \vec{b} , \vec{c} be three unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{1}{2}\vec{b}$, find the angles which \vec{a} makes with \vec{b} and \vec{c} where \vec{b} and \vec{c} non-parallel. $2\frac{1}{2}$

(b) Evaluate
$$\frac{d}{dt} \left[\vec{r} \times \left\{ \frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} \right\} \right]$$
. 2

SECTION-II

4. (a) Find the directional derivatives of f(x, y, z) = xy + yz + zx

in the direction of the vector $2\hat{i} + 3\hat{j} + 3\hat{k}$ at the point (3, 1, 2). 2

(b) If $d = x^2 y^3 z^4$, then find div (grad ϕ) i.e., $\nabla \cdot (\nabla \phi)$. $2\frac{1}{2}$

5. (a) Show that the function
$$\frac{1}{r}$$
,
where $r = |\vec{r}| = \sqrt{x^2 + y^2 + z^2}$

is harmonic function provided $r \neq 0$. $2\frac{1}{2}$

1450//KD/1113

(b) Evaluate $\nabla \cdot (\vec{r} \times \vec{a})$, where \vec{a} is a constant vector and $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$.

SECTION-III

6. (a) Let u = xy, $v = \frac{x^2 + y^2}{2}$, w = z. Show that u, v, w are not orthogonal. 2

- (b) If δ , ϕ , *z* are cylindrical coordinates show that $\nabla \phi$ and $\nabla \log \delta$ are solenoidal. $2^{1/2}$
- 7. (a) If (r, θ, ϕ) are spherical coordinates show that $\nabla \phi = \nabla \times (r \cos \theta \nabla \theta).$ 2
 - (b) Find the volume element dv in
 - (i) cylindrical.
 - (ii) spherical polar coordinates. $2\frac{1}{2}$

SECTION-IV

- 8. (a) Evaluate $\iint_{S} \vec{f} \cdot \hat{n} \, ds$, where $\vec{f} = 12x^2y\hat{i} 3yz\hat{j} + 2z\hat{k}$ and S is the surface of the plane x + y + z = 1 included in the first octant. $2\frac{1}{2}$
 - (b) Find the work done in moving a particle in a force field $\vec{f} = 3x^2\hat{i} + (2xz - y)\hat{j} + z\hat{k}$ along the line joining the point (0, 0, 0) and (2, 1, 3).

1450//KD/1113

[P.T.O.

9. (a) State and prove Stokes theorem.

(b) Evaluate by Green's theorem

$$\oint_{C} (x^2 - \cos h y) \, dx + (y + \sin x) \, dy$$

where C is the rectangle with vertices

$$(0, 0), (4, 0), (4, 1), (0, 1).$$
 $2\frac{1}{2}$

1450//KD/1113