Note : Attempt five questions in all, selecting one question from each section. Q. No. 1 is compulsory.

Compulsory Question

1. (a) Show that the difference between any number and its square is even. 2
(b) Evaluate $\phi(462)$.2
(c) Prove that $\exp (2 n \pi i)=1$. 1
(d) Prove that $\cosh ^{2} x-\sinh ^{2} x=1$. 1
(e) Find the principle and general values of $\log (-5) . \quad 2$

SECTION-I

2. (a) Prove that an integer is divisible by 3 iff the sum of its digits is divisible by 3 .
(b) Find the remainder on dividing the

$$
1!+2!+3!4!+5!+\ldots . . \quad 100!\text { by } 12
$$

3. (a) Solve the congruence $222 x \equiv 12(\bmod 18)$.
(b) If m is a prime number and a, b are two numbers less than m, then prove that
$a^{m-2}+a^{m-3} b+a^{m-4} b^{2}+\ldots \ldots .+b^{m-2}$
is a multiple of m.

SECTION-II

4. (a) Solve the congruences
$x \equiv 1(\bmod 4)$
$x \equiv 3(\bmod 5)$ and
$x \equiv 2(\bmod 7)$ simultaneously.
(b) Prove that $\phi(n)=\frac{n}{2}$ iff $n=2^{k}$ for some integer $k \geq 1$.
5. (a) Find all n such that $d(n)=10$. Hence find the least such value of n.
(b) Show that the smallest positive quadratic non-residue of an odd prime p is itself prime.

SECTION-III

6. (a) If $2 \cos \alpha=x+\frac{1}{x}, 2 \cos \beta=y+\frac{1}{y}$; show that one of the values of $x^{m} y^{n}=\frac{1}{x^{m} y^{n}}$ is $2 \cos (m \alpha+n \beta)$.
(b) Solve $x^{7}=1$ and prove that the sum of the nth powers of the root is 7 or zero, according as n is or is not a multiple of 7 .
7. (a) Show that $\left[\sin (\alpha-\theta)+e^{ \pm i \alpha} \sin \theta\right]^{n}=\sin ^{n-1} \alpha[\sin (\alpha$ $\left.-n \theta)+e^{ \pm i \alpha} \sin n \theta\right]$.
(b) Form an equation whose roots are

$$
\begin{equation*}
\cos \frac{2 \pi}{7}, \cos \frac{4 \pi}{7} \text { and } \cos \frac{8 \pi}{7} \tag{4}
\end{equation*}
$$

SECTION-IV

8. (a) If $i^{i^{i \ldots \ldots a t i n f}}=\mathrm{A}+i \mathrm{~B}$, principal values only being considered, prove that
(i) $\tan \frac{\pi \mathrm{A}}{2}=\frac{\mathrm{B}}{\mathrm{A}}$
(ii) $\mathrm{A}^{2}+\mathrm{B}^{2}=e^{-\pi \mathrm{B}}$.
(b) Separate $\tan ^{-1}(x+i y)$ into real and imaginary parts.
9. (a) Show that $\frac{\pi}{2 \sqrt{3}}=1-\frac{1}{3^{2}}+\frac{1}{5.3^{2}}-\frac{1}{7.3^{3}}+\cdots \infty$.
(b) Find the sum of the series :
$3 \sin \alpha+5 \sin 2 \alpha+7 \sin 3 \alpha+$ \qquad to n terms.
