Roll No.

Total Pages : 3

GSE/M-21

1472

MATHEMATICS (Number Theory and Trigonometry) Paper–BM-121

Time : Three Hours]

[Maximum Marks : 40

Note : Attempt *five* questions in all, selecting *one* question from each section. Q. No. 1 is compulsory.

Compulsory Question

1.	(a)	Show that the difference between any number and it	ts
		square is even.	2
	(b)	Evaluate $\phi(462)$.	2
	(c)	Prove that $\exp(2n\pi i) = 1$.	1
	(d)	Prove that $\cosh^2 x - \sinh^2 x = 1$.	1
	(e)	Find the principle and general values of log (-5).	2
SECTION-I			
2.	(a)	Prove that an integer is divisible by 3 iff the sum of it digits is divisible by 3.	ts 4
	(b)	Find the remainder on dividing the	
		1! + 2! + 3! 4! + 5! + 100! by 12.	4

1472//KD/160

[P.T.O.

3. (a) Solve the congruence $222x \equiv 12 \pmod{18}$.

(b) If m is a prime number and a, b are two numbers less than m, then prove that a^{m-2} + a^{m-3}b + a^{m-4}b² + + b^{m-2} is a multiple of m.

SECTION-II

4. (a) Solve the congruences

 $x \equiv 1 \pmod{4}$ $x \equiv 3 \pmod{5} \text{ and}$ $x \equiv 2 \pmod{7} \text{ simultaneously.} \qquad 4$

(b) Prove that
$$\phi(n) = \frac{n}{2}$$
 iff $n = 2^k$ for some integer $k \ge 1$.

- 5. (a) Find all *n* such that d(n) = 10. Hence find the least such value of *n*. 4
 - (b) Show that the smallest positive quadratic non-residue of an odd prime *p* is itself prime. 4

SECTION-III

6. (a) If $2 \cos \alpha = x + \frac{1}{x}$, $2 \cos \beta = y + \frac{1}{y}$; show that one of

the values of
$$x^m y^n = \frac{1}{x^m y^n}$$
 is $2 \cos(m\alpha + n\beta)$. 4

1472//KD/160

4

4

- (b) Solve $x^7 = 1$ and prove that the sum of the *n*th powers of the root is 7 or zero, according as *n* is or is not a multiple of 7.
- 7. (a) Show that $[\sin (\alpha \theta) + e^{\pm i\alpha} \sin \theta]^n = \sin^{n-1}\alpha [\sin (\alpha n\theta) + e^{\pm i\alpha} \sin n\theta].$
 - (b) Form an equation whose roots are

$$\cos\frac{2\pi}{7}, \cos\frac{4\pi}{7} \text{ and } \cos\frac{8\pi}{7}.$$
 4

SECTION-IV

8. (a) If $i^{i^{i,\dots,at \text{ inf}}} = A + iB$, principal values only being considered, prove that

(i)
$$\tan \frac{\pi A}{2} = \frac{B}{A}$$

(ii) $A^2 + B^2 = e^{-\pi B}$. 4

(b) Separate $tan^{-1}(x + iy)$ into real and imaginary parts.

4

9. (a) Show that
$$\frac{\pi}{2\sqrt{3}} = 1 - \frac{1}{3^2} + \frac{1}{5 \cdot 3^2} - \frac{1}{7 \cdot 3^3} + \dots \infty$$
. 4

(b) Find the sum of the series :

$$3 \sin \alpha + 5 \sin 2\alpha + 7 \sin 3\alpha + \dots$$
 to *n* terms. 4

1472//KD/160