Roll No.

Total Pages : 03

GSM/J-21 1621 PHYSICS Paper VIII Wave and Optics-II

Time : Three Hours]

[Maximum Marks : 40

Note : Attempt *Five* questions in all. Q. No. **1** is compulsory. Attempt *four* more questions selecting *one* question from each Unit. Use of scientific (Non-programmable) calculator is allowed.

1. (a) What is Double Refraction ? Define ordinary and extra ordinary ray. 2

- (b) Define Fourier theorem. 2
- (c) What is translation matrix and system matrix ? 2
- (d) Explain longitudinal and lateral chromatic aberration.

2

Unit I

2. (a)	Explain Brewster's law and prove that refract	refracted ray	
	and reflected ray are mutually perpendicular t	o each	
	other.	4	
(b)	State and explain the Law of Malus.	4	
(3)L-1621	1 1		

- 3. (a) Describe the construction and working of a Bi-quartz arrangement in polarimeter.5
 - (b) Calculate the specific rotation of sugar solution from the following data length of the tube containing solution = 10 cm, volume of solution = 40 c.c., Amount of sugar in solution = 3 gm and Angle of rotation = 4°57'.

Unit II

4.	(a)	State and prove Fourier integral theorem.	6
	(b)	Define complex form of Fourier series.	2
5.	(a)	Apply the Fourier theorem to analyse a square wa	ve
		into its simple harmonic components.	5
			-

(b) Derive Fourier series for an even function in the interval $(-\pi, \pi)$. 3

Unit III

6.	(a)	Derive the convolution theorem for Fourier	r		
		transform.	4		
	(b)	Find the Fourier transform of $f(x) = e^{-x^2/2}$.	4		
7.	(a)	a) Define nodal points. Prove that nodal plane coinc			
		with unit planes when media on either side o	f		
		optical system have same refractive index.	5		

(3)L-1621

2

(b) If a ray is initially given by (2×1) matrix, then show that the effect of translation through a distance D is a homogenous of refractive index μ is completely

given by (2×2) matrix
$$T = \begin{pmatrix} 1 & 0 \\ D/\mu & 1 \end{pmatrix}$$
. 3

Unit IV

- 8. Explain what is chromatic aberration. How is it connected with dispersive power ? Derive the condition for achromatism for two thin lenses in contact.
 8
- 9. (a) What is Optical Fiber ? Define and explain the following terms : 5
 - (i) Acceptance angle
 - (ii) Total internal reflection
 - (iii) Numerical aperture
 - (iv) Normalized frequency.
 - (b) Calculate the critical angle between two material with indices of $\mu_1 = 1.45$ and $\mu_2 = 1.40$. **3**