GSQ/M21

 REAL AND COMPLEX ANALYSIS

 REAL AND COMPLEX ANALYSIS}

1743

Paper-BM-361

Time allowed : $\mathbf{3}$ Hours
Maximum Marks : 40
Note: Attempt five questions in all, Question No. 1 is compulsory. Selecting one question from each unit. All questions carry equal marks.

Compulsory Question

1. (i) Find the coefficient of magnification and angle of rotation at $z=2+i$ for the conformal transformation $w=z^{2}$.
(ii) Show that the function $u(x, y)=1 / 2 \log \left(x^{2}+y^{2}\right)$ is harmonic. 2
(iii) Evaluate : $\int_{0}^{\infty} \sqrt{x} e^{-x^{3}} d x$
(iv) Define Fourier Series for odd functions.

UNIT-I
2. (i) Show that the function $u=x^{2}+y^{2}+z^{2}, v=x+y+z, w=x y+y z+z x$ are not functionally independent of each other. Also find the relation between them.
(ii) Show that: 4

$$
\int_{0}^{\infty} \frac{x^{m-1}+x^{n-1}}{(1+x)^{m+n}} d x=2 B(m, n)
$$

3. (i) Change the order of integration of the following integral and hence evaluate:

$$
\int_{0}^{a} \int_{y^{2} / a}^{y} \frac{y}{(a-x) \sqrt{a x-y^{2}}} d x d y
$$

(ii) Evaluate $\iiint z\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$ through the volume of the cylinder $x^{2}+y^{2}=4$ intercepted by the planes $z=0$ and $z=2$. UNIT-II
4. (i) If the Fourier Series for $f(x)$ converges uniformly in $(c, c+2 l)$, then prove that :

$$
\int_{c}^{c+2 l}[f(x)]^{2} d x=l\left[\frac{1}{2} \mathrm{a}_{0}^{2}+\sum_{\mathrm{n}=1}^{\infty}\left(\mathrm{a}_{\mathrm{n}}^{2}+\mathrm{b}_{\mathrm{n}}^{2}\right)\right]
$$

(ii) Obtain the Fourier Series expansion for the function $f(x)=x+x^{2}$ in $[-\pi, \pi]$.
5. (i) Find the Fourier expansion of the function $f(x)$ with period 2π defined as :

$$
f(x)=\left\{\begin{array}{cl}
-1 & , \text { for }-\pi<x<0 \\
1 & , \text { for } 0 \leq x \leq \pi
\end{array}\right.
$$

(ii) Express $f(x)=x$ as half range cosine series in $0<x<2$.

UNIT-III
6. (i) Find the stereographic projection of the point $z=x+i y$ of extended complex plane on the sphere of radius 1 and centre $(0,0,0)$ in R^{3}.
(ii) Show that the function $f(z)=|z|^{2}$ is continuous everywhere but nowhere differentiable except at origin.
7. (i) Show that the function $f(z)=\sqrt{|x y|}, z=x+y$ is not analytic at the origin, although the Cauchy-Hiemann equations are satisfied at that point.

4
(ii) Prove that $u=y^{3}-3 x^{2} y$ is a harmonic function and find the corresponding analytic function.

4
UNIT-IV
8. (i) What is the region of the w-plane into which the rectangular region in the z-plane bounded by the lines $x=0, y=0, x=1$ and $y=2$, is mapped under the transformation $w=z+(2-i)$.
(ii) Find the fixed points and normal form of the Mobins transformation :

$$
w=\frac{z}{z-4}
$$

9. (i) Find the billnear transformation which maps the joints $z=1, i,-1$ onto $w=i, 0,-i$. Also, find the image of $|z|<1$.
(ii) Prove that the image of $|z+2 i|=5$ under the transformation

$$
\begin{equation*}
f(z)=\frac{1}{z} \text { is } u^{2}+v^{2}=\frac{1}{21}(1-4 v) \tag{4}
\end{equation*}
$$

