GSQ/M-21

REAL AND COMPLEX ANALYSIS

Paper-BM-361
Time Allowed : 3 Hours]
[Maximum Marks : 27

Note : Attempt five questions in all, selecting one question from each Unit. Question No. 1 is compulsory.

Compulsory Question

1. Write short answer of the following :
(a) Prove Symmetry of Beta function.
(b) Find the Fourier coefficient for the function $\mathrm{f}(\mathrm{x})=\mathrm{x}$ in $[=\pi, \pi]$. 1
(c) Find a point on the complex plane corresponding to the point $\left(\frac{1}{3},-\frac{2}{3}, \frac{2}{3}\right)$ on the Riemann sphere $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=1$.
(d) Find the angle of rotation at $\mathrm{z}=2+\mathrm{i}$ for the transformation $\mathrm{w}=\mathrm{z}^{2}$.
(e) Find the fixed points of Bilinear transformation $w=\frac{z}{z-2}$.

UNIT-I

2. (a) Find the Jacobian of u, v, w with respect to x, y, z given that $u=x+y+z ; v^{2}=y z+z x+x y ; w^{3}=x y z$.
(b) Prove that:

$$
\begin{equation*}
\int_{0}^{\pi / 2} \sqrt{\tan \theta} d \theta=\frac{\pi}{\sqrt{2}} . \tag{1/2}
\end{equation*}
$$

3. (a) Evaluate $\iiint x y z d x d y d z$ over the ellipsoid

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \tag{1⁄2}
\end{equation*}
$$

(b) Evaluate $\int_{0}^{\infty} \int_{0}^{x} x^{-x^{2} / y} d y d x$ by changing the order of integration.

UNIT-II

4. (a) Find the Fourier series for the function

$$
\begin{equation*}
f(x)=|\sin x| ;-\pi<x<\pi \tag{1/2}
\end{equation*}
$$

(b) Find the half-range cosine series for $f(x)=x(\pi-x)$ in the interval $(0, \pi)$.
5. (a) Obtain Fourier series for the function $f(x)=x-x^{2},-1<x<1 . \quad 2^{1 / 2}$
(b) Let

$$
f(x)=\left\{\begin{array}{rc}
-1, & -\pi<x<0 \\
1, & 0<x<\pi
\end{array}\right.
$$

Using Parseval's identity, compute the sum $\sum_{\mathrm{k}=1}^{\infty}(2 \mathrm{k}-1)^{-2} . \quad 2^{1 / 2}$

UNIT-III

6. (a) Prove that $\mathrm{f}(\mathrm{z})=\overline{\mathrm{z}}$ is nowhere differentiable, but continuous everywhere in complex plane.
(b) Show that $\mathrm{u}=\frac{1}{2} \log \left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)$ is harmonic and find its harmonic conjugate. $2^{1 / 2}$
7. (a) Prove that an analytic function with constant modulus is constant.
(b) For what value of λ, the function $f(z)=r^{2} \cos \lambda \theta+\mathrm{ir}^{2} \sin 2 \theta$ is analytic. Also find $f^{\prime}(0)$.

UNIT-IV

8. (a) Let the rectangular region D in the z -plane be bounded by $\mathrm{x}=0$, $y=0, x=2, y=3$. Determine the region D^{1} of the w-plane into which D is mapped under the transformation $w=\sqrt{2} \mathrm{e}^{\mathrm{i} \frac{\pi}{4}} \mathrm{z} . \quad 21 / 2$
(b) Find the image of $|z+3 i|=6$ under the transformation

$$
\mathrm{f}(\mathrm{z})=\frac{1}{\mathrm{z}}
$$

9. (a) Find the Bilinear transformation which maps the points $\mathrm{z}=0,-1$, i onto $\mathrm{w}=\mathrm{i}, 0, \infty$. Also find the image of the unit circle $|\mathrm{z}|=1$.
(b) Find all the Mobius transformation which map the half-plane $\mathrm{I}(\mathrm{z}) \geq 0$ into circle $|\mathrm{w}| \leq 1$. $21 / 2$
