1721

2

GSQ/M-21 REAL AND COMPLEX ANALYSIS

Paper–BM-361

Time Allowed : 3 Hours]

[Maximum Marks : 27

Note : Attempt five questions in all, selecting one question from each Unit. Question No. 1 is compulsory.

Compulsory Question

- 1. Write short answer of the following :
 - (a) Prove Symmetry of Beta function.
 - (b) Find the Fourier coefficient for the function f(x) = x in $[=\pi, \pi]$.
 - (c) Find a point on the complex plane corresponding to the point $\left(\frac{1}{3}, -\frac{2}{3}, \frac{2}{3}\right)$ on the Riemann sphere $x^2 + y^2 + z^2 = 1$. 2
 - (d) Find the angle of rotation at z = 2 + i for the transformation $w = z^2$.

(e) Find the fixed points of Bilinear transformation $w = \frac{z}{z-2}$. 1

UNIT-I

- 2. (a) Find the Jacobian of u, v, w with respect to x, y, z given that $u = x + y + z; v^2 = yz + zx + xy; w^3 = xyz.$ $2^{1/2}$
 - (b) Prove that :

$$\int_{0}^{\pi/2} \sqrt{\tan \theta} \, \mathrm{d}\theta = \frac{\pi}{\sqrt{2}}.$$
 2¹/₂

1721/K/48

3. (a) Evaluate $\iiint xyz \, dx \, dy \, dz$ over the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$
 2¹/₂

(b) Evaluate
$$\int_{0}^{\infty} \int_{0}^{x} x e^{-x^2/y} dy dx$$
 by changing the order of integration. $2\frac{1}{2}$

UNIT-II

4. (a) Find the Fourier series for the function

$$f(x) = |\sin x|; -\pi < x < \pi.$$
 $2^{1/2}$

(b) Find the half-range cosine series for $f(x) = x(\pi - x)$ in the interval (0, π). $2^{1/2}$

5. (a) Obtain Fourier series for the function $f(x) = x - x^2$, -1 < x < 1. $2\frac{1}{2}$

(b) Let

$$f(x) = \begin{cases} -1 & , & -\pi < x < 0 \\ 1 & , & 0 < x < \pi \end{cases}$$

Using Parseval's identity, compute the sum $\sum_{k=1}^{\infty} (2k-1)^{-2}$. $2\frac{1}{2}$

UNIT-III

- 6. (a) Prove that $f(z) = \overline{z}$ is nowhere differentiable, but continuous everywhere in complex plane. $2^{1/2}$
 - (b) Show that $u = \frac{1}{2} \log(x^2 + y^2)$ is harmonic and find its harmonic conjugate. $2\frac{1}{2}$
- 7. (a) Prove that an analytic function with constant modulus is constant. $2\frac{1}{2}$
 - (b) For what value of λ , the function $f(z) = r^2 \cos \lambda \theta + ir^2 \sin 2\theta$ is analytic. Also find f'(0). $2^{\frac{1}{2}}$

1721/K/48

UNIT-IV

8. (a) Let the rectangular region D in the z-plane be bounded by x = 0, y = 0, x = 2, y = 3. Determine the region D¹ of the w-plane into which D is mapped under the transformation w = √2 e^{iπ/4}z. 2¹/₂
(b) Find the image of | z+3i |=6 under the transformation

$$f(z) = \frac{1}{z}.$$

- 9. (a) Find the Bilinear transformation which maps the points z = 0, -1, i onto $w = i, 0, \infty$. Also find the image of the unit circle |z|=1. $2^{1/2}$
 - (b) Find all the Mobius transformation which map the half-plane $I(z) \ge 0$ into circle $|w| \le 1$. $2^{1/2}$