GSQ/M21

LINEAR ALGEBRA

Paper-BM-362

Time allowed : $\mathbf{3}$ Hours
Maximum Marks : 26
Note: Attempt five questions in all, selecting one question from each unit. Question No. $\mathbf{1}$ is compulsory.

Compulsory Question

1. (i) In a vector space $V(F)$, prove that: $(-1) u=-u$ for all $u \in V$.
(ii) Prove that the set $\{(1,0,0),(0,1,0),(0,0,1)\}$ is a basis of vector space $R^{3}(R)$.
(iii) Prove that the transformation $T: R^{2} \rightarrow R$ defined by $T(x, y)=x y$ is not linear.
(iv) Define Dual Space. 1
(v) Define Inner Product Space. 1
(vi) Define Self Adjoint Operator. 1

UNIT-I

2. (i) Prove that the necessary and sufficient condition for a vector space $\mathrm{V}(\mathrm{F})$ to be a direct sum of its subspaces W1 and W2 are that :
(a) $V=W_{1}+W_{2}$
(b) $\quad W_{1} \cap W_{2}=\{0\}$.
$2^{1 / 2}$
(ii) Prove that the four vectors $v_{1}=(1,0,-1), v_{2}=(-1,0,0), v_{3}=(1,0,1)$ and $v_{4}=(2,1,3)$ are linearly depended over R.
$21 / 2$
3. (i) Prove that every subspace W of a finite dimensional vector space $V(F)$, has a complementary subspace W^{T} and $\lim W=\lim V-\lim W$. $\quad 2^{1 ⁄ 2} 2$
(ii) If V is a vector space of all square matrices over R and $W=\left\{\left[\begin{array}{ll}a & b \\ o & c\end{array}\right]: a, b, c, \in R\right\}$. Find a basis of $\frac{V}{W}$. $2^{1 / 2}$

UNIT-II

4. (i) Prove that every n-dimensional vector space $U(F)$ is isomorphic to F^{n}.
(ii) If $T: U(F) \rightarrow V(F)$ is a linear transformation, then prove that:

Rank $T+$ Nullity $T=\lim U$.
5. (i) Let $S=\left\{v_{1}, v_{2}, v_{3}\right\}$ be a basis of $v_{3}(R)$, defined by $v_{1}=(-1,1,1)$, $v_{2}=(1,-1,1), v_{3}=(1,1,-1)$. Find the dual basis of S.
$21 / 2$
(ii) If V is a finite dimensional vector space and W be a subspace of V, then prove that $A[A(w)]=W$.

UNIT-III
6. (i) Let $T_{1}: R^{3} \rightarrow R^{2}$ such that $T_{1}(x, y, z)=(x+y+z, x+y)$

$$
\begin{aligned}
& T_{2}: R^{3} \rightarrow R^{2} \text { such that } T_{2}(x, y, z)=(2 x+z, x+y) \\
& T_{3}: R^{3} \rightarrow R^{2} \text { such that } T_{3}(x, y, z)=(2 y, x)
\end{aligned}
$$

Find a formula defining the transformation $2 T_{1}-3 T_{2}+4 T_{3}$. Also find the image of $(-1,0,3)$ under this map and show that T_{1}, T_{2}, T_{3} are linearly independent.
$21 / 2$
(ii) Let $T: R^{3} \rightarrow R^{3}$ be a linear operator defined by $T(x, y, z)=(x-3 y-2 z$, $y-4 z, z)$. Show that T is invertible and find T^{-1}.
7. (i) Write the matrix of linear transformation $T: p_{3}(x) \rightarrow p_{2}(x)$ defined by $T\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right)=a_{3}+\left(a_{1}+a_{3}\right) x+\left(a_{0}+a_{1}\right) x^{2}$ relative to the basis $B=\left\{1, x-1,(x-1)^{2},(x-1)^{3}\right.$ and $B^{1}=\left\{1, x, x^{2}\right\}$.
(ii) Let $\mathrm{T}: \mathrm{R}^{3} \rightarrow \mathrm{R}^{3}$ be a linear transformation such that :
$\mathrm{A}=\left[\begin{array}{lll}3 & 1 & 7 \\ 0 & 2 & 6 \\ 0 & 0 & 5\end{array}\right]$
is a matrix of T with respect to ordered basis $\{(1,2,3),(1,2,0)$, $(1,0,0)\}$. Determine the Eigen values and Eigen vectors for T. $2^{1 / 2} 2$

UNIT-IV

8. (i) Let V be an inner product space, then prove that :
$\|u+v\| \leq\|u\|+\|v\|$. $2^{1 / 2}$
(ii) Let S be a subset of an inner product space V then show that :
$S^{1}=S^{111}$. $21 / 2$
9. (i) Let W be a subspace of an inner product space $V(F)$. If $\left\{u_{1}, u_{2}, \ldots . . ., u_{\mathrm{n}}\right\}$ is an orthonormal basis of W and $\left\{v_{1}, v_{2}, \ldots v_{m}\right)$ is an orthonormal

basis of W_{\perp}, then show that $\left\{u_{1}, u_{2}, \ldots \ldots \ldots ., u_{n}, v_{1}, v_{2}, \ldots \ldots \ldots . ., v_{m}\right\}$ is an orthonormal basis of V. $21 / 2$

(ii) Let T be a normal operator on an inner product space V. If $u \in V$, then show that :

$$
T(u)=0 \text { iff } T^{*}(u)=0 . \quad 21 / 2
$$

