GSQ/M21

LINEAR ALGEBRA

Paper-BM-362
Time allowed : $\mathbf{3}$ Hours
Maximum Marks : 40
Note: Attempt five questions in all, selecting one question from each unit. Question No. $\mathbf{1}$ is compulsory.

Compulsory Question

1. (i) Find the dimension of Vector space $\mathrm{Q}(\sqrt{2})$ over Q . 2
(ii) Define Linear dependence and Independence of vectors of a set. 2
(iii) Express $(1,2)$ as a Linear combination of $(2,0)$ and $(1,3)$. 1
(iv) Find the norm of vector $u=(2,-3,6)$ and normalize the vector. 2
(v) Define Inner Product Space. 1

UNIT-I
2. (i) Show that the set $\mathrm{Q}(\sqrt{2})=\{\mathrm{a}+\mathrm{b} \sqrt{2}: \mathrm{a}, \mathrm{b} \in \mathrm{Q}\}$ is a vector space over Q with respect to the compositions :
$(a+b \sqrt{2})+(c+d \sqrt{2})=a+c+(b+d) \sqrt{2}$
$\alpha(a+b \sqrt{2})=a \alpha+b \alpha \sqrt{2}$
where a, b, c, d and α are rational numbers.
(ii) Union of two subspacer is a subspace if and only if one is contained in the other.
3. (i) The intersection of two subspaces w_{1} and w_{2} of Vector Space $V(F)$ is also a subspace of $V(F)$.
(ii) Determine a basis of the subspace spanned by the vector $(-3,1,2)$, $(0,1,3),(2,1,0),(1,1,1$,$) .$
4. (i) Let $u_{1}=(1,1), u_{2}=(0,1)$ be a basis of $I R^{2}$. Let $T: I R^{2} \rightarrow I R$ to be linear transformation for which $T\left(u_{1}\right)=3$ and $T\left(u_{2}\right)=-2$. Find the linear transformation T.
(ii) Let $T: U(F) \rightarrow V(F)$ be a linear transformation. If $u_{1}, u_{2}, \ldots \ldots ., \mathrm{u}_{\mathrm{n}}$ are linearly independent vectors of U and T is one-one then $T\left(u_{1}\right), T\left(u_{2}\right)$,, $T\left(u_{n}\right)$ are also linearly independent.
5. (i) If $T: U(F) \rightarrow V(F)$ is a linear transformation, then : $\operatorname{dim}[R(T)+\operatorname{dim}[N(T)]=\operatorname{dim} U$.
(ii) If $T: U \rightarrow V$ be a homomorphism, then $\operatorname{ker}(T)$ is a subspace of U. 3 UNIT-III
6. (i) Let $T: I R^{3} \rightarrow I R^{3}$ be a linear operator defined by : $T(x, y, z)=(2 x, 4 x-y, 2 x+3 y-z)$. Show that T is invertible and find T^{-1}.
(ii) If linear transformation $T: \not \subset(I R) \rightarrow \not \subset(I R)$ defined as $T(a+i b)=a-i b$ for all $a, b \in I R$. Find matrix of T with respect to the ordered basis $\mathrm{B}=\{1+i, 1+2 i\}$.
7. (i) Prove that similar matrices have same characteristic polynomial.
(ii) Find the Eigen values, Eigen vectors for the matrix :

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

UNIT-IV
8. (i) State and prove Cauchy Schwarz inequality.
(ii) Every finite dimensional vector space is an inner product space.
9. (i) Obtain an orthonormal basis with respect to standard inner product for the subspace of IR^{3} generated by $(1,0,1),(1,0,-1)$ and $(0,3,4)$. 4
(ii) Let T be a Linear Operator on a Unitary space V , then T is normal iff : $\left\|T^{*}(u)\right\|=\|T(u)\| \forall u \in \mathrm{~V}$.

