Maximum Marks : 40

1744

GSQ/M21 LINEAR ALGEBRA Paper–BM-362

Time allowed : 3 Hours

Note : Attempt **five** questions in all, selecting **one** question from each unit. Question No. **1** is compulsory.

Compulsory Question

1.	(i)	Find the dimension of Vector space $Q(\sqrt{2})$ over Q.	2
	(ii)	Define Linear dependence and Independence of vectors of a set.	2
	(iii)	Express $(1, 2)$ as a Linear combination of $(2, 0)$ and $(1, 3)$.	1
	(iv)	Find the norm of vector $u = (2, -3, 6)$ and normalize the vector.	2
	(v)	Define Inner Product Space.	1
UNIT-I			
2.	(i)	how that the set $Q(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in Q\}$ is a vector space over	
		Q with respect to the compositions :	
		$(a + b\sqrt{2}) + (c + d\sqrt{2}) = a + c + (b + d)\sqrt{2}$	
		$\alpha(a+b\sqrt{2}) = a\alpha + b\alpha\sqrt{2}$	
		where a, b, c, d and α are rational numbers.	4
	(ii)	Union of two subspacer is a subspace if and only if one is contain	ed in
		the other.	4

- 3. (i) The intersection of two subspaces w_1 and w_2 of Vector Space V(F) is also a subspace of V(F).
 - (ii) Determine a basis of the subspace spanned by the vector (-3, 1, 2), (0, 1, 3), (2, 1, 0), (1, 1, 1,).

UNIT-II

- 4. (i) Let $u_1 = (1, 1)$, $u_2 = (0, 1)$ be a basis of IR^2 . Let $T : IR^2 \to IR$ to be linear transformation for which $T(u_1) = 3$ and $T(u_2) = -2$. Find the linear transformation *T*. 4
 - (ii) Let T: U(F) → V(F) be a linear transformation. If u₁, u₂,, u_n are linearly independent vectors of U and T is one-one then T(u₁), T(u₂),, T(u_n) are also linearly independent.

- 5. (i) If $T: U(F) \to V(F)$ is a linear transformation, then : dim[R(T) + dim[N(T)] = dim U.
 - (ii) If $T: U \to V$ be a homomorphism, then ker(T) is a subspace of U. 3 UNIT-III

5

4

- 6. (i) Let $T: IR^3 \rightarrow IR^3$ be a linear operator defined by : T(x, y, z) = (2x, 4x - y, 2x + 3y - z). Show that *T* is invertible and find T^{-1} .
 - (ii) If linear transformation T: ⊄(IR) → ⊄(IR) defined as T(a+ib) = a-ib for all a, b ∈ IR. Find matrix of T with respect to the ordered basis B = {1 + i, 1 + 2i}.
- 7. (i) Prove that similar matrices have same characteristic polynomial.
 - (ii) Find the Eigen values, Eigen vectors for the matrix :

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
UNIT-IV

- (ii) Every finite dimensional vector space is an inner product space. 4
- 9. (i) Obtain an orthonormal basis with respect to standard inner product for the subspace of IR³ generated by (1, 0, 1), (1, 0, -1) and (0, 3, 4). 4
 - (ii) Let T be a Linear Operator on a Unitary space V, then T is normal iff : $|| T^{*}(u) || = || T(u) || \forall u \in V.$ 4