GSE/M-21

VECTOR CALCULUS
 Paper-BM-123

Time : Three Hours]
[Maximum Marks : 40

Note : Attempt five questions in all, selecting one question from each section. Q. No. 1 is compulsory.

Compulsory Question

1. (a) Evaluate $\hat{i} \cdot(\hat{j} \times \hat{k})+(\hat{i} \times \hat{k}) . \hat{j}$.
(b) If $r=|\vec{r}|$, where $\vec{r}=x \hat{i}+y \hat{j}=z \hat{k}$ prove that

$$
\begin{equation*}
\nabla f(r) \times \vec{r}=\overrightarrow{0} . \tag{2}
\end{equation*}
$$

(c) Let u, v, w be orthogonal co-ordinates, prove that

$$
\begin{equation*}
\hat{e}_{1}=\hat{\mathrm{E}}_{1}, \hat{e}_{2}=\hat{\mathrm{E}}_{2}, \hat{e}_{3}=\hat{\mathrm{E}}_{3} \tag{2}
\end{equation*}
$$

(d) If $\vec{r}=2 t \hat{i}+3 t^{2} \hat{j}-t^{3} \hat{k}$, evaluate $\int_{1}^{2}\left(\frac{d \vec{r}}{d t} \times \frac{d^{2} \vec{r}}{d t^{2}}\right) d t . \quad 2$

SECTION-I

2. (a) If $\vec{a}, \vec{b}, \vec{c}$ are three unit vectors, such that $\vec{b} \times(\vec{c} \times \vec{a})=\frac{1}{2} \vec{c}$, find angles which \vec{b} makes with \vec{c} and \vec{a}, \hat{i} and \vec{a} being non-parallel.
(b) Prove that $(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})=[\vec{a} \vec{b} \vec{c}] \vec{c}$ and hence deduce that $\left[\begin{array}{llll}\vec{b} \times \vec{c} & \vec{c} \times \vec{a} & \vec{a} \times \vec{b}\end{array}\right]=\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]^{2}$.
3. (a) Show that $[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}]=2[\vec{a} \vec{b} \vec{c}]$.
(b) The necessary and sufficient condition for the vector function \vec{f} of a scalar variable t to have a constant magnitude is $\vec{f} \cdot \frac{d \vec{f}}{d t}=0$.

SECTION-II

4. (a) Find the directional derivative of

$$
f(x, y, z)=x y+y z+z x
$$

in the direction of the vector $2 \hat{i}+3 \hat{j}+6 \hat{k}$ at the point $(3,1,2)$.
(b) Show that $r^{n} \vec{r}$ is irrotational, where $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ and $|\vec{r}|=r$.
5. (a) Explain geometrical interpretation of grad d.
(b) Prove that $\nabla^{2} f(r)=\frac{2}{r} f^{\prime}(r)+f^{\prime \prime}(r)$.

SECTION-III

6. (a) Express the vector field $2 y \hat{i}-z \hat{j}+3 x \hat{k}$ in spherical polar co-ordinates.
(b) Prove that spherical coordinate system is self-reciprocal.
7. (a) Express $\vec{f}=3 y \hat{i}+x^{2} \hat{j}-z^{2} \hat{k} \quad$ in cyclindrical coordinates.
(b) Prove that $u=x y, v=\frac{x^{2}+y^{2}}{2}, w=z$ are not orthogonal.

SECTION-IV

8. (a) Evaluate by Green's theorem
$\oint_{\mathrm{C}}(\cos x \sin y-x y) d x+\sin x \cos y d y$, where C is the circle $x^{2}+y^{2}=1$.
(b) Evaluate by Stocke's theorem $\oint_{\mathrm{C}}\left(e^{x} d x+2 y d y-s z\right)$ where C is the curve $x^{2}+y^{2}=4, z=2$.
9. (a) Evaluate $\iint_{\mathrm{S}}\left(x^{3} d y d z+y^{3} d z d x+z^{3} d x d y\right)$ over the surface S of a cube bounded by the coordinate planes and the planes $x=y=z=a$.
(b) Show that the area bounded by a simple closed curve C is given by $\frac{1}{2} \oint_{\mathrm{C}} x d y-y d x$. Hence find the area of the ellipse $x=a \cos \theta, y=b \sin \theta$. 4
