Roll No.

Total Pages : 4

GSE/M-21

1474

VECTOR CALCULUS Paper–BM-123

Time : Three Hours]

[Maximum Marks : 40

Note : Attempt *five* questions in all, selecting *one* question from each section. Q. No. 1 is compulsory.

Compulsory Question

1. (a) Evaluate
$$\hat{i} \cdot (\hat{j} \times \hat{k}) + (\hat{i} \times \hat{k}) \cdot \hat{j}$$
. 2

(b) If $r = |\vec{r}|$, where $\vec{r} = x\hat{i} + y\hat{j} = z\hat{k}$ prove that $\nabla f(r) \times \vec{r} = \vec{0}$.

(c) Let *u*, *v*, *w* be orthogonal co-ordinates, prove that

$$\hat{e}_1 = \hat{E}_1, \hat{e}_2 = \hat{E}_2, \hat{e}_3 = \hat{E}_3.$$
 2

(d) If
$$\vec{r} = 2t\hat{i} + 3t^2\hat{j} - t^3\hat{k}$$
, evaluate $\int_1^2 \left(\frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2}\right) dt$. 2

SECTION-I

2. (a) If $\vec{a}, \vec{b}, \vec{c}$ are three unit vectors, such that $\vec{b} \times (\vec{c} \times \vec{a}) = \frac{1}{2}\vec{c}$, find angles which \vec{b} makes with \vec{c} and \vec{a} , \hat{i} and \vec{a} being non-parallel. 4 1474//KD/886 [P.T.O. (b) Prove that $(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a}) = [\vec{a} \ \vec{b} \ \vec{c}] \ \vec{c}$ and hence deduce that $[\vec{b} \times \vec{c} \ \vec{c} \times \vec{a} \ \vec{a} \times \vec{b}] = [\vec{a} \ \vec{b} \ \vec{c}]^2$. 4

3. (a) Show that
$$[\vec{a} + \vec{b} \ \vec{b} + \vec{c} \ \vec{c} + \vec{a}] = 2[\vec{a} \ \vec{b} \ \vec{c}].$$
 4

(b) The necessary and sufficient condition for the vector function \vec{f} of a scalar variable *t* to have a constant

magnitude is
$$\vec{f} \cdot \frac{d\vec{f}}{dt} = 0$$
.

SECTION-II

4. (a) Find the directional derivative of

f(x, y, z) = xy + yz + zx

in the direction of the vector $2\hat{i} + 3\hat{j} + 6\hat{k}$ at the point (3, 1, 2).

- (b) Show that $r^n \vec{r}$ is irrotational, where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $|\vec{r}| = r$.
- 5. (a) Explain geometrical interpretation of grad d. 4

(b) Prove that
$$\nabla^2 f(r) = \frac{2}{r} f'(r) + f''(r)$$
. 4

1474//KD/886

SECTION-III

- 6. (a) Express the vector field $2y\hat{i} z\hat{j} + 3x\hat{k}$ in spherical polar co-ordinates. 4
 - (b) Prove that spherical coordinate system is self-reciprocal.
- 7. (a) Express $\vec{f} = 3y\hat{i} + x^2\hat{j} z^2\hat{k}$ in cyclindrical coordinates.
 - (b) Prove that u = xy, $v = \frac{x^2 + y^2}{2}$, w = z are not orthogonal.

SECTION-IV

8. (a) Evaluate by Green's theorem

 $\oint_{C} (\cos x \sin y - xy) dx + \sin x \cos y \, dy, \text{ where } C \text{ is the}$ circle $x^2 + y^2 = 1.$ 4

(b) Evaluate by Stocke's theorem $\oint_C (e^x dx + 2ydy - sz)$ where C is the curve $x^2 + y^2 = 4$, z = 2.

9. (a) Evaluate
$$\iint_{S} (x^3 dy dz + y^3 dz dx + z^3 dx dy)$$
 over the

surface S of a cube bounded by the coordinate planes and the planes x = y = z = a. 4

1474//KD/886

[P.T.O.

(b) Show that the area bounded by a simple closed curve

C is given by $\frac{1}{2} \oint_C x dy - y dx$. Hence find the area of

the ellipse $x = a \cos \theta$, $y = b \sin \theta$. 4

1474//KD/886