Roll No.

Total Pages: 4

GSQ/D-21

1071

CHEMISTRY (Inorganic Chemistry) Paper–XV-CH-301

Time : Three Hours]

[Maximum Marks : 32

Note : Attempt *five* questions in all, selecting *two* questions from each Section. Q. No. 1 is compulsory.

Compulsory Question

- **1.** (a) Why anhydrous $CuSO_4$ is colourless ?
 - (b) The d-orbitals which participate in d²sp³ hybridization are and
 - (c) CFSE for tetrahedral field is always than that for octahedral field.
 - (d) Log β is a measure of of the complex.
 - (e) In low spin octahedral complex K₄[Cr(CN)₆].3H₂O, Cr has configuration.
 - (f) *d*-*d* transitions in an octahedral complex are Laporte
 - (g) $In^{2s+1} L_J$, J is
 - (h) Pt-halogen bond is labile than Pt-nitrogen bond. (1×8=8)

1071//KD/209

[P.T.O.

SECTION-A

- 2. (a) $[Cr(NH_3)_6]^{+3}$ is paramagnetic while $[Ni(CN)_4]^{-2}$ is diamagnetic. Explain why ? 2
 - (b) On the basis of crystal field theory, explain why $[Ti(H_2O)_6]^{+3}$ is coloured ? 2
 - (c) Calculate CFSE for d^6 tetrahedral complex. Show the number of unpaired electrons also. 2
- 3. (a) Why is the magnitude of crystal field splitting in tetrahedral complexes (Δ_t) smaller than in octahedral complexes (Δ_0) . 2
 - (b) In case of d⁵ electronic configuration in an octahedral complex, if $\Delta_0 < P$, then what type of complex will it be ? 2
 - (c) What is the effect of oxidation state of metal ion on crystal field splitting ? Give example.
- 4. (a) Give synthesis of three isomers of $[Pt(NH_3)(Py)(Br) I]$ starting from $[Pt(Cl)_4]^{-2}$. 2
 - (b) Write an expression for the stability constant, β_n for the complex [Cu(NH₃)₄]⁺² ion. 1¹/₂
 - (c) Which is more stable complex and why : $[Ni(en)_3]^{+2}$ or $[Ni(NH_3)_6]^{+2}$? 1¹/₂
- 5. (a) How does the nature of ligand affect the stability of the complex ? 2

1071//KD/209

(b) What do you mean by trans effect ? Arrange the following in order of increasing trans effect :

Br⁻, NH₃, OH⁻, H₂O, Cl⁻.
$$2$$

$$PtL_2TX + Y \rightarrow PtL_2TY + X.$$
 2

SECTION-B

6. (a) Calculate
$$\mu_s$$
 for Cu⁺² and Ni⁺². 2

- (b) What is magnetic susceptibility ? How does it vary with temperature ? 2
- (c) Discuss antiferromagnetism and paramagnetism. 2
- 7. (a) Predict which of the following configurations are expected to have orbital contribution in tetrahedral field : (i) d^2 (ii) d^4 (iii) d^7 (iv) d^8 . 2
 - (b) Calculate μ_{S} and μ_{S+L} for $[Co(NH_3)_6]^{+3}$ ion. 2
 - (c) Elaborate spin orbital coupling. How does it affect the magnetic moment of an ion ? 2

8. (a) Identify the ground state terms for each set of terms :
(i)
$${}^{1}S, {}^{2}P, {}^{2}D, {}^{3}F, {}^{1}G.$$
 2
(ii) ${}^{1}S, {}^{3}P, {}^{1}D.$ 2

(b) Derive the ground state terms for d^{10} configuration.

2

1071//KD/209

- 9. (a) Draw orgel diagram for d¹ and d⁹ configurations in octahedral complexes.
 - (b) In $[Mn(H_2O)_6]^{+2}$, all transitions are both spin multiplicity and Laporte forbidden, but it is pale pink in colour. Explain. 2
 - (c) In the absorption spectrum of Ti^{+3} (aq), d^1 is attributed to single $t_{2g} \rightarrow e_g$ transition. Explain the position, intensity and broad nature of the band. 2