Roll No.

Total Pages : 3

GSQ/D-21

1072

PHYSICAL CHEMSITRY Paper–XVI CH-302

Time : Three Hours]

[Maximum Marks : 32

Note : Attempt *five* questions, selecting at least *two* questions from each section Question no. 1 is compulsory.

Compulsory Ouestion

- (a) What happens to the energy of the particle in one dimensional box if the length of the box is made large?
 2
 - (b) How does measurement of magnetic susceptibility confirm that the formula of hypo phosphoric acid is $H_4P_2O_6$ and not H_2PO_3 ? 2
 - (c) Why CO₂ molecule can't give pure rotational spectra but give vibrational spectra? 2
 - (d) What is the selection rule for pure rotational spectroscopy and pure rotational Raman spectroscopy?

SECTION-A

2.	(a)	Derive Planck's radiation law.	3
	(b)	Explain the photoelectric effect, why it was explained on the basis of Classical mechanics.	not 2
	(c)	Write a note on Eigen values.	1
107	2//KI	D/676 [P.]	Г.О.

3. (a) Evaluate the commutator

$$[x^2, d^2/dx^2].$$
 $2\frac{1}{2}$

- (b) Write results of a particle moving in one dimensional box. 2
- (c) To prove the Eigen values of a Hermitian Operator are all real values. 1.5
- 4. (a) Prove that

 $\Delta x.\Delta p_x > h/4\pi$ with the help of a wave function which represents a particle moving in one dimensional box.

3

- (b) Write a note on Optical activity, its origin and acts as constitutive property.3
- **5.** (a) Derive Clausius-Mosotti equation. 2
 - (b) The dipole moment of HBr is 0.78D and the bond distance is 1.40 Å. Calculate the percentage ionic character of the H-Br bond. $1\frac{1}{2}$
 - (c) Explain the applications of magnetic susceptibility.

21/2

2

SECTION-B

- 6. (a) Why band spectrum is observed in electronic spectrum of a molecule while single line spectrum is observed in atomic spectra.
 - (b) Calculate vibrational degree of freedom in following molecules (i) CO₂ (ii) C₂H₂ (iii) Benzene (iv) He.
 - (c) Define signal to noise ratio.

1072//KD/676

- (a) Explain Isotopic effect on pure rotational spectra by taking an example of ¹HC1 & ²HC1.
 - (b) Which are rotational active molecules among the following :
 - (i) CO
 - (ii) H₂
 - (iii) CH₄
 - (iv) H₂O.
 - (c) Which region of electromagnetic spectrum belongs to rotational spectrum? 1
- 8. (a) Calculate the force constant for the bond in HC1 from the fact that fundamental vibration frequency is $8.667 \times 10^{13} \text{ S}^{-1}$.
 - (b) Write a note on the elementary idea of vibrational frequencies of fundamental transition due to some functional groups in organic molecules. 3
- 9. (a) Explain O, Q & S-branches of lines in Raman spectra.
 - 3

2

(b) Write a note on the Raman effect in terms of polarizability.3

1072//KD/676

3