GSM/D-21 ADVANCED CALCULUS

922

Paper-BM-231
Time Allowed : 3 Hours]
[Maximum Marks : 40
Note : Attempt five questions in all, selecting at least one question from each Unit. Question No. $\mathbf{1}$ is compulsory. All questions carry equal marks.

Compulsory Question

1. (a) State Implicit Function Theorem. 2
(b) Define Continuous Function and Uniformly Continuous Function. 2
(c) Define Principal Normal and Binormal. 2
(d) Define Involute and Evolute of curves.

UNIT-I

2. (a) Every function defined and continuous on a closed interval is bounded in that interval. Prove it.
(b) Verify Rolle's theorem for the function :

$$
\begin{equation*}
f(x)=\left(x^{2}-4 x+3\right) e^{2 x} \text { in }[1,3] . \tag{4}
\end{equation*}
$$

3. (a) Evaluate: $\operatorname{Lim}_{x \rightarrow 0}\left(\frac{\tan x}{x}\right)^{\frac{1}{x^{2}}}$
(b) Prove that the function defined by:

$$
f(x)=\sin \frac{1}{x}, x \in R^{+}
$$

is continuous but not uniformly continuous on R^{+}.

UNIT-II

4. (a) Prove that the function f defined by:

$$
f(x, y)= \begin{cases}y \sin \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } \mathrm{x}=0\end{cases}
$$

is continuous at the origin.
(b) If $u=\sin ^{-1} \frac{x+y}{\sqrt{x}+\sqrt{y}}$

Prove that
$\frac{x^{2} \partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} y}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=\frac{-\sin u \cos 2 u}{4 \cos ^{3} u}$
5. (a) Let $\mathrm{f}=\mathrm{R}^{2} \rightarrow \mathrm{R}$ be defined as:
$f(x, y)=\left\{\begin{array}{cl}\frac{x^{2}-y^{2}}{x^{2}+y^{2}} & ;(x, y) \neq(0,0) \\ 0 & ;(x, y)=(0,0)\end{array}\right.$
Prove that $\operatorname{Lim} f(x, y)$ does note exits.
(b) If $y^{3}-3 a x^{2}+x^{3}=0$, prove $\frac{d^{2} y}{d x^{2}}+\frac{2 a^{2} x^{2}}{y^{5}}=0$

UNIT-III

6. (a) Show by an example that a function of two variables is continuous and possesses firsts order partial derivatives at a point but not differentiable at that point.
(b) Examine the function:
$f(x, y)=x^{3}+y^{3}-63(x+y)+12 x y$
for maxima and minima.
7. (a) Find the maximum value of $\cos \mathrm{A} \cos \mathrm{B} \cos \mathrm{C}$, where $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the angles of plane triangle ABC .
(b) For the function:

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{1}{4}\left(x^{2}+y^{2}\right) \log \left(x^{2}+y^{2}\right) & ;(x, y) \neq(0,0) \\
0 & ;(x, y)=(0,0)
\end{array}\right.
$$

Show that $f_{x y}=f_{y x} \forall x, y$ but the conditions of Schwarz's theorem are not satisfied.

UNIT-IV

8. (a) Find the length of the circular helix
$\vec{r}(t)=a \operatorname{cost} \hat{i}+a \sin t \hat{j}+c t \hat{k},-\infty<t<\infty$
from $(a, 0,0)$ to $(a, 0,2 \pi \mathrm{c})$. Also obtain its equation in terms of parameter 's'.
(b) Find the equation of osculating sphere at $(1,2,3)$ on the curve $x=2 t+1, y=3 t^{2}+2, z=4 t^{3}+3$. 4
9. (a) Find the curvature and torsion of the helix 4 $x=a \cos t, y=a \sin t, z=a t \tan \alpha$.
(b) Find the envelope of the sphere.

$$
(x-a \cos \theta)^{2}+(y-a \sin \theta)^{2}+z^{2}=b^{2} .
$$

