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Time Allowed : 3 Hours] [Maximum Marks : 40

Attempt questions in all, selecting at least question from

each Unit. Question No. is compulsory. All questions carry equal

marks.

1. (a) State Implicit Function Theorem. 2

(b) Define Continuous Function and Uniformly Continuous Function. 2

(c) Define Principal Normal and Binormal. 2

(d) Define Involute and Evolute of curves. 2

2. (a) Every function defined and continuous on a closed interval is

bounded in that interval. Prove it. 4

(b) Verify Rolle’s theorem for the function : 4

( ) = ( ² –4 + 3) in [1, 3].

3. (a) Evaluate : 4

(b) Prove that the function defined by: 4

is continuous but not uniformly continuous on R .

4. (a) Prove that the function defined by :

is continuous at the origin. 4
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(b) If 4

Prove that

5. (a) Let f = R² R be defined as : 4

Prove that     Lim ( , ) does note exits.

(b) If y³ – 3ax² + x³ = 0, prove 4

6. (a) Show by an example that a function of two variables is continuous

and possesses firsts order partial derivatives at a point but not

differentiable at that point. 4

(b) Examine the function: 4

for maxima and minima.

7. (a) Find the maximum value of cos A cos B cos C, where A, B, C are

the angles of plane triangle ABC. 4

(b) For the function: 4

Show that = , but the conditions of Schwarz’s theorem

are not satisfied.
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UNIT-IV

8. (a) Find the length of the circular helix

from ( , 0, 0) to ( , 0, 2 c). Also obtain its equation in terms of

parameter ‘s’. 4

(b) Find the equation of osculating sphere at (1, 2, 3) on the curve

= 2 + 1, = 3 + 2, = 4 + 3. 4

9. (a) Find the curvature and torsion of the helix 4

= cos , = sin , = tan .

(b) Find the envelope of the sphere. 4

( – cos ) + ( – sin ) + = .
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