		GSE/D-21	7 4	16
		CALCULUS		
		BM-112		
Time : Three Hours] [Maximum N			arks :	26
No	te: A	Attempt Five questions in all, selecting one	questi	on
	fi	from each Section. Q. No. 1 is compulsory.		
		Compulsory Question		
1.	(i)	Prove that $ \sin x $ is continuous.		1
	(ii)	State Taylor's theorem with Lagrange's	form	of
		remainder after n terms.		1
	(iii)	Define radius of curvature.		1
	(iv)	Evaluate $\int_0^{\pi/2} \sin^6 \theta d\theta$.		2
	(v)	What is the axis of revolution ?		1
		Section I		
2.	(a)	Expand tan x by Maclaurin's theorem as	x^5 a	nd
		hence find the value of tan 46°30' upto four	decin	nal
		places.	2	21/2
(2)L-746		1		

Total Pages: 04

Roll No.

(b) If
$$y = (\sin^{-1} x)^2$$
, prove that : $2\frac{1}{2}$

$$(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$$

- 3. (a) State and prove Maclaurin's theorem with Cauchy's form of remainder. 2½
 - (b) Prove that : $2\frac{1}{2}$

$$\log\left(x+\sqrt{1+x^2}\right) = x - \frac{1}{2} \cdot \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{x^5}{5} - \dots$$

Section II

- 4. (a) Show that the four asymptotes of the curve $xy(x^2-y^2)+25y^2+9x^2-144=0$ cut it again in eight points on an ellipse whose eccentricity is $\frac{4}{5}$.
 - (b) Find the asymptote of the curve : $2\frac{1}{2}$ $r\cos 2\theta = a\sin 3\theta$
- 5. (a) Find P, the radius of curvature for the curve : $2\frac{1}{2}$ $x = a\cos^3\theta$, $y = \sin^3\theta$

2

(2)L-746

(b) If C_x and C_y be the chord of curvature parallel to co-ordinate axes at any point of the curve $y = ae^{x/a}$, prove that : 2½

$$\frac{1}{C_{x^2}} + \frac{1}{C_{v^2}} = \frac{1}{2aC_x}$$

Section III

6. (a) Trace the curve : $2\frac{1}{2}$ $x = a(\theta + \sin \theta), y = a(1 + \cos \theta)$

(b) If
$$u_n = \int_0^{\pi/4} \tan^n x \, dx$$
, show that : $2\frac{1}{2}$

$$u_n + u_{n-2} = \frac{1}{n-1}$$

Hence evaluate u_5 .

- 7. (a) Find the length of the arc $x^2 + y^2 2ax = 0$ in the first quadratant. 2½
 - (b) Find the intrinsic equation of the cycloid $x = a(t + \sin t), y = a(1 \cos t)$ and prove that $s^2 + p^2 = 16a^2$. 2½

Section IV

8. (a) Find the area common to the circle $x^2 + y^2 = 4$ and the ellipse $x^2 + 4y^2 = 9$.

3

(2)L-746

- (b) Show that the area of the region included between the cardioids $r = a(1 + \cos \theta)$ and $r = a(1 \cos \theta)$ is $\frac{a^2}{2}(3\pi 8)$.
- 9. (a) Find the volume of the solid of revolution obtained by rotating the area included between the curve $y^2 = x^3$ and $x^2 = y^3$ about the x-axis. 2½
 - (b) Find the centroid of the semi-circular region of radius r by Pappus theorem. $2\frac{1}{2}$