783 **GSE/D-21 CALCULUS** BM-112 Time: Three Hours] [Maximum Marks: 40 Note: Attempt Five questions in all, selecting one question from each Unit. Q. No. 1 is compulsory. **Compulsory Question** Evaluate: 2 1. (a) $\lim_{n\to 0}\frac{x}{|x|}$ (b) 2 Evaluate: $\lim_{n\to\infty} \frac{\sum n^2}{n^3}$ Find the radius of curvature at the origin for the (c) 2 curve : $x^3 + y^2 - 2x^2 + 6y = 0$ (d) What is a singular point? 1 Define Quadrature. (e) 1 (2)L-7831

Roll No.

Total Pages: 04

Unit I

- 2. (a) State and prove Taylor's theorem with Cauchy's form of remainder after n terms.
 - (b) Prove that the function 'f' defined as:

$$f(x, y) = \begin{cases} x \sin \frac{1}{x}; & \text{if } x \neq 0 \\ 0; & \text{if } x = 0 \end{cases}$$

is continuous at x = 0 but not derivable at 0. 4

3. (a) If
$$y = \frac{x^2}{(x-1)^3(x-2)}$$
, find y_n .

(b) If
$$y = \left[x + \sqrt{1 + x^2}\right]^m$$
, find $y_n(0)$.

Unit II

- 4. (a) Find the asymptotes of $r \cos \theta = a \cos 2\theta$.
 - (b) Find all the asymptotes of the curve : $(x-y)^2 (x-2y)(x-3y) 2a(x^3-y^3)$ $-2a^2 (x-2y)(x+y) = 0$
- 5. (a) If P_1 and P_2 are the radii of curvature at the extremities of a focal chord of a parabola whose latus rectum is ℓ , prove that :

$$(P_1)^{-2/3} + (P_2)^{-2/3} = (\ell)^{-2/3}$$

(2)L-783

(b) Show that the radius of curvature for the cardioid $r = 1(1-\cos\theta)$ is $\frac{2}{3}\sqrt{2ar}$ and prove that $\frac{\mathbf{P}^2}{r}$ is constant.

Unit III

- **6.** (a) Trace the curve $r = a(1 + \cos \theta)$.
 - (b) Evaluate $\int_0^\infty x^n e^{-x} dx$, where *n* is a positive integer.

4

- 7. (a) If $u_n = \int \cos n\theta \csc\theta \ d\theta$, prove that : 4 $u_n u_{n-2} = \frac{2\cos(n-1)\theta}{(n-1)}$
 - (b) Show that the length of the curve : 4 $x^{2}(a^{2}-x^{2})=8a^{2}y^{2} \text{ is } \pi a\sqrt{2}$

Unit IV

- **8.** (a) Find the area common to the parabola $y^2 = 4x$ and $x^2 = 4ay$.
 - (b) Show that the area of the region included between the cardioids $r = a(1 + \cos \theta)$ and $r = a(1 \cos \theta)$ is $\frac{a^2}{2}(3\pi 8)$.

(2)L-783

9. (a) Show that the surface area of the solid of revolution of $r = a(1 + \cos \theta)$ about the initial line is $\frac{32}{5}\pi a^2$.

4

(b) Find the centroid of the quadrant of a circular arc.

4

(2)L-783