Roll No.

Total Pages : 2

1069

GSQ/D-21

PHYSICS (Quantum and Laser Physics) Paper–IX Group No. : PH-501

Time : Three Hours]

[Maximum Marks : 40

Note : Attempt *five* questions in all, Question no 1 is Compulsory. Select *one* question from each unit. All questions carry equal marks. Non-programmable calculator is allowed.

Compulsory Question

1.	(a)	Calculate the de-Broglie wavelength for 28.8 eV neut of mass 1.67×10^{-27} kg.	ron (2)
	(b)	What is zero point energy of an harmonic oscillato	r? (2)
	(c)	What is coherent length in laser ?	(2)
	(d)	What do you mean by spiking of laser ?	(2)
UNIT–I			
2.	(a)	What are de-Broglie waves? Develop expression de-Broglie wavelength of particle.	for (4)

- (b) Calculate the size of the atom with the help of Heisenberg's uncertainty principle. (4)
- **3.** (a) Define the terms group and phase velocity. What is relation between them. (4)

1069//KD/278

[P.T.O.

(b) Develop time independent Schrödinger wave equation for a non-relativistic particle. (4)

UNIT-II

- Write down Schrödinger wave equation for a free particle inside a rigid wall of infinite potentials. Find out its eigen values and functions. Plot the normalized wave function for first two energy levels.
- 5. What is tunneling through a barrier? Derive an expression for reflection and transmission through a barrier when $E > V_0$. (8)

UNIT-III

- 6. (a) Explain the concept of temporal coherence and monocromicity for laser. (5)
 - (b) For an ordinary source, coherence time is 10^{-10} s. Find out the degree of non-mono-cromacity $\lambda_0 = 6000$ Å. (3)
- 7. Derive Fuchbauer-Landenburg formula connecting absorption coefficient with energy level of population. (8)

UNIT-IV

- **8.** Discuss with a suitable diagrams the principle, construction and working of a He-Ne gas laser. (8)
- **9.** Describe with the help of suitable diagrams the main features and condition of lasing action of a semiconductor. (8)

1069//KD/278