GSQ/D-21
1037

MATHEMATICS

(Groups and Rings)
Paper-BM-352

Time : Three Hours]
[Maximum Marks : 26

Note : Attempt five questions in all, selecting one question from each section. Q. No. 1 is compulsory.

Compulsory Question

1. (a) Prove that a group G is abelian if every element of G except the identity element is of order 2 . 1
(b) Prove that an ideal S of a ring R is a subring of $\mathrm{R} . \quad 1$
(c) Define primitive polynomial and irreducible polynomial with example.
(d) How many generators are there in a cyclic group of order 10 ?
(e) If $f: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ is homomorphism of group then show that $f(e)=e^{\prime}$ where e and e^{\prime} are identity of G and G^{\prime} respectively.

UNIT-I

2. (a) If G^{\prime} is a commutator subgroup of G then prove that $\mathrm{G} / \mathrm{G}^{\prime}$ is abelian.
(b) If H is the only subgroup of finite order in the group G , then prove that H is the normal subgroup of $\mathrm{G} .2^{1 / 2}$
3. (a) Prove that every finite group of prime order is cyclic.
(b) Show that the set $\mathrm{G}=\{a+b \sqrt{2}: a, b \in \mathrm{Q}\}$ is an abelian group with respect to addition.

UNIT-II

4. (a) If G is a finite abelian group of order n and m is a positive integer such that $(m, n)=1$, then show that $f: \mathrm{G} \rightarrow \mathrm{G}$ defined by $f(x)=x^{n}$ is an automorphism.

$$
21 / 2
$$

(b) Show that if G is a non-abelian group of order 343 then $O(Z(G))=7$. $\quad 2^{1 ⁄ 2}$
5. (a) Let $Z(G)$ be the centre of a group G then $a \in Z(G)$ iff $\mathrm{N}(a)=\mathrm{G} . \quad 2 \frac{1}{2}$
(b) Let $f=\left(\begin{array}{ll}1 & 2\end{array}\right), g=\left(\begin{array}{ll}4 & 5\end{array}\right)$ be two cyclic permutations defined on set $S=\{1,2,3,4,5\}$ prove that

$$
f \cdot g=g \cdot f
$$

UNIT-III

6. (a) Prove that characteristic of an integral domain is either zero or prime number.
$2^{1 / 2}$
(b) Prove that intersection of any two left ideal of a ring is a left ideal of the ring.
$2^{1 / 2}$
7. (a) Prove that if I and J are two ideal of a ring R. Then $(\mathrm{I}+\mathrm{J}) / \mathrm{J} \cong \mathrm{J} / \mathrm{I} \cap \mathrm{J}$.
$21 / 2$
(b) Let R be a commutative ring with unity. If R has no proper ideal then R is a field.

UNIT-IV

8. (a) Let R be an integral domain with unity element. If a, b are two non-zero element of R then $a \sim b$ iff a / b and b / a. $2^{1 / 2}$
(b) Show that $\sqrt{-5}$ in a prime element of the ring $\mathrm{Z} \sqrt{-5}=\{a+\sqrt{-5} b: a, b \in \mathrm{Z}\}$. $2^{1 / 2}$
9. (a) If F is a field, then $\mathrm{F}[\mathrm{X}]$ may not be a field. $21 / 2$
(b) Let R be an integral domain with unity. Then units of R and $R[X]$ are some.
$2^{1 / 2}$
