Roll No.

Total Pages : 3

GSQ/D-21

1037

MATHEMATICS (Groups and Rings) Paper–BM-352

Time : Three Hours]

[Maximum Marks : 26

Note : Attempt *five* questions in all, selecting *one* question from each section. Q. No. 1 is compulsory.

Compulsory Question

- (a) Prove that a group G is abelian if every element of G except the identity element is of order 2.
 - (b) Prove that an ideal S of a ring R is a subring of R. 1
 - (c) Define primitive polynomial and irreducible polynomial with example. 1
 - (d) How many generators are there in a cyclic group of order 10?
 - (e) If f: G → G' is homomorphism of group then show that f(e) = e' where e and e' are identity of G and G' respectively.

UNIT-I

- 2. (a) If G' is a commutator subgroup of G then prove that G/G' is abelian. $2\frac{1}{2}$
 - (b) If H is the only subgroup of finite order in the group G, then prove that H is the normal subgroup of G. 2¹/₂

1037//KD/92

[P.T.O.

- 3. (a) Prove that every finite group of prime order is cyclic. $2\frac{1}{2}$
 - (b) Show that the set G = $\{a + b\sqrt{2} : a, b \in Q\}$ is an abelian group with respect to addition. $2\frac{1}{2}$

UNIT-II

- 4. (a) If G is a finite abelian group of order *n* and *m* is a positive integer such that (m, n) = 1, then show that $f: G \to G$ defined by $f(x) = x^n$ is an automorphism. $2^{1/2}$
 - (b) Show that if G is a non-abelian group of order 343 then O (Z(G)) = 7. $2\frac{1}{2}$
- 5. (a) Let Z(G) be the centre of a group G then $a \in Z(G)$ iff N(a) = G. $2\frac{1}{2}$
 - (b) Let $f = (1 \ 2 \ 3)$, $g = (4 \ 5)$ be two cyclic permutations defined on set S = {1, 2, 3, 4, 5} prove that

$$f \cdot g = g \cdot f. \qquad 2\frac{1}{2}$$

UNIT-III

- 6. (a) Prove that characteristic of an integral domain is either zero or prime number. $2\frac{1}{2}$
 - (b) Prove that intersection of any two left ideal of a ring is a left ideal of the ring. $2\frac{1}{2}$
- 7. (a) Prove that if I and J are two ideal of a ring R. Then $(I + J)/J \cong J/I \cap J.$ $2\frac{1}{2}$
 - (b) Let R be a commutative ring with unity. If R has no proper ideal then R is a field. $2\frac{1}{2}$

1037//KD/92

UNIT-IV

- 8. (a) Let R be an integral domain with unity element. If a, b are two non-zero element of R then $a \sim b$ iff a/b and b/a. $2^{1/2}$
 - (b) Show that $\sqrt{-5}$ in a prime element of the ring

$$Z\sqrt{-5} = \left\{ a + \sqrt{-5} \ b : a, b \in \mathbb{Z} \right\}.$$
 2¹/₂

- 9. (a) If F is a field, then F[X] may not be a field. $2\frac{1}{2}$
 - (b) Let R be an integral domain with unity. Then units of R and R[X] are some.