GSQ/D-21

(Numerical Analysis)
Paper-POM-353
Time : Three Hours]
[Maximum Marks : 20
Note : Attempt five questions in all, selecting one question from each section, Q. No. 1 is compulsory.

Compulsory Question

1. (a) State Newton's Backward Interpolation formula.
(b) Find Binomial distribution where mean is 3 and variance is 2 .
(c) Define Simpson's $\frac{1}{3}$ rd rule of integration.
(d) Evaluate $\Delta\left(x^{2}+\sin x\right)$.

SECTION-I

2. (a) Given
$\sin 45^{\circ}=0.7071 ; \sin 50^{\circ}=0.7660$
$\sin 55^{\circ}=0.8192 ; \sin 60^{\circ}=0.8660$
Find $\sin 52^{\circ}$.
(b) Using Newton's divided difference formulas, find the function u_{x} in powers of $x-1$, given that $u_{0}=8, u_{1}=11, u_{4}=68, u_{5}=123$.
3. (a) By means of Langrange's formula prove that

$$
y_{0}=\frac{1}{2}\left[y_{1}+y_{-1}\right]-\frac{1}{8}\left[\frac{1}{2}\left(y_{3}-y_{1}\right)-\frac{1}{2}\left(y_{-1}-y_{-3}\right)\right]
$$

(b) Apply Hermite's formula to interpolate for \sin (1.05) from the following data :

x	$\sin x$	$\cos x$
1.00	0.84147	0.54030
1.10	0.89121	0.45360

SECTION-II

4. (a) Use Sterling formula to find the value of $\sqrt{22.2}$ given that

$$
\begin{aligned}
& \sqrt{20}=4.472 ; \sqrt{21}=4.583 ; \sqrt{22}=4.690 \\
& \sqrt{23}=4.796 ; \sqrt{24}=4.899
\end{aligned}
$$

(b) Given $y_{20}=24, y_{24}=32, y_{28}=35, y_{32}=40$ find y_{25} by Bessel's formula.

2,2
5. (a) Two unbiased dice are thrown together at random. What is expected value of sum of the numbers shown by the two dice?
(b) Two cards are drawn simultaneously from a pack of 52 cards without replacement. Find the probability distribution of kings. 2,2

SECTION-III

6. Find the maximum value of $f(x)$ using the following tables:

x	-1	1	2	3
$f(x)$	7	5	19	51

7. Using Jacobi's method, find all the eigen values and the eigen vectors of matrix

$$
\mathrm{A}=\left[\begin{array}{rrr}
1 & \sqrt{2} & 2 \tag{4}\\
\sqrt{2} & 3 & \sqrt{2} \\
2 & \sqrt{2} & 1
\end{array}\right]
$$

SECTION-IV

8. (a) Evaluate $\int_{0}^{1} \frac{1}{1+x^{2}} d x$ by trapezoidal rule taking $h=\frac{1}{4}$.
(b) Evaluate $\int_{0}^{\pi / 2} e^{\sin x} d x$ correct to four decmial places by dividing the range into three equal parts.
9. Use the Runge-Kutta method to solve $10 \frac{d y}{d x}=x^{2}+y^{2}$, $y(0)=1$ for the interval $0<x \leq 0.4$ with $h=0.1$.
