Roll No.

Total Pages : 04

GSQ/M-20 1721
MATHEMATICS
BM-361
Real and Complex Analysis

Time : Three Hours]
[Maximum Marks : 27
Note: Attempt Five questions in all, selecting one question from each Section. Q. No. $\mathbf{1}$ is compulsory.

(Compulsory Question)

1. (a) Evaluate $\int_{0}^{3} \frac{d x}{\sqrt{3 x-x^{2}}}$.
(b) Find the Fourier coefficient b_{n} for the function $f(x)=|x|$ in $[-\pi, \pi]$. 1
(c) Find the image of the point $2+3 i$ on the sphere of radius $\frac{1}{2}$ and centre $\left(0,0, \frac{1}{2}\right)$.
(d) Define Orthogonal System.
(e) Find the fixed point and normal form of the bilinear transformation $w=\frac{3 z-4}{z-1}$.
(3)L-1721

Section I

2. (a) If $u=x+y+z, v=x y+y z+z x$ and $w=x^{3}+y^{3}+z^{3}-3 x y z$, then show that $\frac{\partial(u, v, w)}{\partial(x, y, z)}=0$. Also find the relation between u, v, w.
(b) Prove that:

$$
\int_{0}^{1} \frac{x^{m-1}(1-x)^{n-1}}{(a+x)^{m+n}} d x=\frac{\sqrt{(m)} \sqrt{(n)}}{a^{n}(1+a)^{m} \sqrt{(m+n)}}
$$

3. (a) Evaluate $\iiint_{\mathrm{V}} z^{2} d x d y d z$, where V is interior of sphere $x^{2}+y^{2}+z^{2}=1$. 21/2
(b) Evaluate $\int_{0}^{4 a} \int_{x^{2} / 4 a}^{2 \sqrt{a x}} d y d x$ by changing the order of integration. $21 / 2$

Section II

4. (a) Find the Fourier series expansion of $f(x)=x \sin x$ in $[-\pi, \pi]$. $21 / 2$
(b) Express $f(x)=x$ as a half range sine series in $0<x<2$. 21/2
(3)L-1721
5. (a) Obtain Fourier series for the function :

$$
f(x)=\left\{\begin{array}{ccc}
\pi x, & 0 \leq x \leq 1 \\
\pi(2-x), & 1 \leq x \leq 2
\end{array}\right.
$$

(b) Find the Fourier series of x^{2} in $[-\pi, \pi]$. Use Parseval's identity to prove that: $\quad \mathbf{2} 1 / 2$

$$
\frac{\pi^{4}}{90}=1+\frac{1}{2^{4}}+\frac{1}{3^{4}}+
$$

Section III

6. (a) Show that the function $f(z)=|z|^{2}$ is continuous everywhere but nowhere differentiable except at the origin.
(b) Prove that the function $\sinh z$ is analytic and find its derivative.
7. (a) Prove that $u=x^{2}-y^{2}$ and $v=\frac{y}{x^{2}+y^{2}}$ are harmonic functions but u and v are not harmonic conjugates. $21 / 2$
(b) Find the regular function whose imaginary part is $v=e^{x}(x \sin y+y \cos y)$. $21 / 2$

Section IV

8. (a) Find the image of the infinite strip $0<y<\frac{1}{2}$ under the transformation $w=\frac{1}{z}$ and also draw the graph. $\quad 2 \frac{1}{2}$
(b) Find the image of region inside the circle $|z|=1$ under the mapping which maps the points $z=1, i$, -1 onto $w=i, 0,-i$. $21 / 2$
9. (a) Find the condition that the transformation $w=\frac{a z+b}{c z+d}$ transforms the unit circle in the w-plane into straight lines in the z-plane. $\quad \mathbf{2} 1 / 2$
(b) Find all the Mobius transformations which map the unit circle $|z| \leq 1$ into the unit circle $|w| \leq 1.2 \frac{1}{2}$
