Roll No.

Total Pages : 04

GSQ/M-20 1721 MATHEMATICS BM-361 Real and Complex Analysis

Time : Three Hours]

[Maximum Marks : 27

Note : Attempt *Five* questions in all, selecting *one* question from each Section. Q. No. **1** is compulsory.

(Compulsory Question)

1. (a) Evaluate
$$\int_{0}^{3} \frac{dx}{\sqrt{3x-x^2}}$$
. 2

(b) Find the Fourier coefficient
$$b_n$$
 for the function
 $f(x) = |x|$ in $[-\pi, \pi]$. 1

(c) Find the image of the point 2 + 3i on the sphere of

radius
$$\frac{1}{2}$$
 and centre $\left(0, 0, \frac{1}{2}\right)$. 2

transformation
$$w = \frac{3z - 4}{z - 1}$$
. 1

(3)L-1721

Section I

2. (a) If u = x + y + z, v = xy + yz + zx and $w = x^3 + y^3 + z^3 - 3xyz$, then show that $\frac{\partial(u, v, w)}{\partial(x, y, z)} = 0$. Also find the relation between u, v, w. $2\frac{1}{2}$

(b) Prove that : $2\frac{1}{2}$

$$\int_{0}^{1} \frac{x^{m-1} (1-x)^{n-1}}{(a+x)^{m+n}} dx = \frac{\boxed{(m)}}{a^{n} (1+a)^{m}} \boxed{(m+n)}$$

3. (a) Evaluate
$$\iiint_V z^2 dx dy dz$$
, where V is interior of

sphere
$$x^2 + y^2 + z^2 = 1$$
. $2\frac{1}{2}$

21/2

(b) Evaluate
$$\int_{0}^{4a} \int_{x^2/4a}^{2\sqrt{ax}} dy dx$$
 by changing the order of

integration.

Section II

4. (a) Find the Fourier series expansion of
$$f(x) = x \sin x$$

in $[-\pi, \pi]$. $2\frac{1}{2}$

(b) Express
$$f(x) = x$$
 as a half range sine series in
 $0 < x < 2$. $2^{1/2}$

(3)L-1721

5. (a) Obtain Fourier series for the function : $2\frac{1}{2}$

$$f(x) = \begin{cases} \pi x & , \quad 0 \le x \le 1 \\ \pi (2 - x) & , \quad 1 \le x \le 2 \end{cases}$$

(b) Find the Fourier series of x^2 in $[-\pi, \pi]$. Use Parseval's identity to prove that : $2\frac{1}{2}$

$$\frac{\pi^4}{90} = 1 + \frac{1}{2^4} + \frac{1}{3^4} + \dots$$

Section III

- 6. (a) Show that the function $f(z) = |z|^2$ is continuous everywhere but nowhere differentiable except at the origin. $2\frac{1}{2}$
 - (b) Prove that the function $\sinh z$ is analytic and find its derivative. $2^{1/2}$
- 7. (a) Prove that $u = x^2 y^2$ and $v = \frac{y}{x^2 + y^2}$ are harmonic functions but u and v are not harmonic conjugates. $2\frac{y}{2}$

(b) Find the regular function whose imaginary part is

$$v = e^{x} (x \sin y + y \cos y).$$
 2¹/₂

3

(3)L-1721

Section IV

8. (a) Find the image of the infinite strip 0 < y < 1/2 under the transformation w = 1/z and also draw the graph.
2¹/₂
(b) Find the image of region inside the circle |z| = 1 under the mapping which maps the points z = 1, i, -1 onto w = i, 0, -i.

9. (a) Find the condition that the transformation $w = \frac{az+b}{cz+d}$ transforms the unit circle in the *w*-plane into straight lines in the *z*-plane. 2¹/₂

(b) Find all the Mobius transformations which map the unit circle $|z| \le 1$ into the unit circle $|w| \le 1$. $2\frac{1}{2}$

(3)L-1721

4